Found problems: 2265
1992 National High School Mathematics League, 3
Areas of four surfaces of a tetrahedron are $S_1,S_2,S_3,S_4$. And the largest one of them is $S$. $\lambda=\frac{S_1+S_2+S_3+S_4}{S}$, then $\lambda$ always satisfies
$\text{(A)}2<\lambda\leq4\qquad\text{(B)}3<\lambda<4\qquad\text{(C)}2.5<\lambda\leq4.5\qquad\text{(D)}3.5<\lambda<5.5$
1981 Poland - Second Round, 6
The surface areas of the bases of a given truncated triangular pyramid are equal to $ B_1 $ and $ B_2 $. This pyramid can be cut with a plane parallel to the bases so that a sphere can be inscribed in each of the obtained parts. Prove that the lateral surface area of the given pyramid is $ (\sqrt{B_1} + \sqrt{B_2})(\sqrt[4]{B_1} + \sqrt[4]{B_2})^2 $.
2014 ELMO Shortlist, 10
Find all positive integer bases $b \ge 9$ so that the number
\[ \frac{{\overbrace{11 \cdots 1}^{n-1 \ 1's}0\overbrace{77 \cdots 7}^{n-1\ 7's}8\overbrace{11 \cdots 1}^{n \ 1's}}_b}{3} \]
is a perfect cube in base 10 for all sufficiently large positive integers $n$.
[i]Proposed by Yang Liu[/i]
2004 Tournament Of Towns, 3
The perpendicular projection of a triangular pyramid on some plane has the largest possible area. Prove that this plane is parallel to either a face or two opposite edges of the pyramid.
2004 Romania National Olympiad, 3
Let $ABCD A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a truncated regular pyramid in which $BC^{\prime}$ and $DA^{\prime}$ are perpendicular.
(a) Prove that $\measuredangle \left( AB^{\prime},DA^{\prime} \right) = 60^{\circ}$;
(b) If the projection of $B^{\prime}$ on $(ABC)$ is the center of the incircle of $ABC$, then prove that $d \left( CB^{\prime},AD^{\prime} \right) = \frac12 BC^{\prime}$.
[i]Mircea Fianu[/i]
1960 IMO, 6
Consider a cone of revolution with an inscribed sphere tangent to the base of the cone. A cylinder is circumscribed about this sphere so that one of its bases lies in the base of the cone. let $V_1$ be the volume of the cone and $V_2$ be the volume of the cylinder.
a) Prove that $V_1 \neq V_2$;
b) Find the smallest number $k$ for which $V_1=kV_2$; for this case, construct the angle subtended by a diamter of the base of the cone at the vertex of the cone.
2005 Tuymaada Olympiad, 4
In a triangle $ABC$, let $A_{1}$, $B_{1}$, $C_{1}$ be the points where the excircles touch the sides $BC$, $CA$ and $AB$ respectively. Prove that $A A_{1}$, $B B_{1}$ and $C C_{1}$ are the sidelenghts of a triangle.
[i]Proposed by L. Emelyanov[/i]
2001 AIME Problems, 12
Given a triangle, its midpoint triangle is obtained by joining the midpoints of its sides. A sequence of polyhedra $P_{i}$ is defined recursively as follows: $P_{0}$ is a regular tetrahedron whose volume is 1. To obtain $P_{i+1}$, replace the midpoint triangle of every face of $P_{i}$ by an outward-pointing regular tetrahedron that has the midpoint triangle as a face. The volume of $P_{3}$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
1996 Tournament Of Towns, (499) 1
Does there exist a cube in space such that the perpendiculars dropped from its eight vertices to a given plane are of length $0, 1, 2, 3, 4, 5, 6$ and $7$?
(V Proizvolov)
1989 AMC 12/AHSME, 26
A regular octahedron is formed by joining the centers of adjoining faces of a cube. The ratio of the volume of the octahedron to the volume of the cube is
$ \textbf{(A)}\ \frac{\sqrt{3}}{12} \qquad\textbf{(B)}\ \frac{\sqrt{6}}{16} \qquad\textbf{(C)}\ \frac{1}{6} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{8} \qquad\textbf{(E)}\ \frac{1}{4} $
1992 IMO, 2
Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$.
[hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]
Kvant 2023, M2747
In the tetrahedron $ABCD,$ on the continuation of the edges $AB, AC$ and $AD$, three points were marked for point $A{},$ located from $A{}$ at a distance equal to the semi-perimeter of the triangle $BCD.$ Similarly, we marked three points corresponding to vertices $B, C$ and $D.$ Prove that if there is a sphere touching all the edges of the tetrahedron $ABCD$, then the marked 12 points lie on the same sphere.
[i]Proposed by V. Alexandrov[/i]
1998 All-Russian Olympiad Regional Round, 11.7
Given two regular tetrahedrons with edges of length $\sqrt2$, transforming into one another with central symmetry. Let $\Phi$ be the set the midpoints of segments whose ends belong to different tetrahedrons. Find the volume of the figure $\Phi$.
1978 Bulgaria National Olympiad, Problem 6
The base of the pyramid with vertex $S$ is a pentagon $ABCDE$ for which $BC>DE$ and $AB>CD$. If $AS$ is the longest edge of the pyramid prove that $BS>CS$.
[i]Jordan Tabov[/i]
1981 IMO Shortlist, 5
A cube is assembled with $27$ white cubes. The larger cube is then painted black on the outside and disassembled. A blind man reassembles it. What is the probability that the cube is now completely black on the outside? Give an approximation of the size of your answer.
2022 Israel National Olympiad, P5
A paper convex quadrilateral will be called [b]folding[/b] if there are points $P,Q,R,S$ on the interiors of segments $AB,BC,CD,DA$ respectively so that if we fold in the triangles $SAP, PBQ, QCR, RDS$, they will exactly cover the quadrilateral $PQRS$. In other words, if the folded triangles will cover the quadrilateral $PQRS$ but won't cover each other.
Prove that if quadrilateral $ABCD$ is folding, then $AC\perp BD$ or $ABCD$ is a trapezoid.
2010 All-Russian Olympiad, 1
Let $a \neq b a,b \in \mathbb{R}$ such that $(x^2+20ax+10b)(x^2+20bx+10a)=0$ has no roots for $x$. Prove that $20(b-a)$ is not an integer.
1966 IMO Shortlist, 3
A regular triangular prism has the altitude $h,$ and the two bases of the prism are equilateral triangles with side length $a.$ Dream-holes are made in the centers of both bases, and the three lateral faces are mirrors. Assume that a ray of light, entering the prism through the dream-hole in the upper base, then being reflected once by any of the three mirrors, quits the prism through the dream-hole in the lower base. Find the angle between the upper base and the light ray at the moment when the light ray entered the prism, and the length of the way of the light ray in the interior of the prism.
2007 Bundeswettbewerb Mathematik, 3
A set $ E$ of points in the 3D space let $ L(E)$ denote the set of all those points which lie on lines composed of two distinct points of $ E.$ Let $ T$ denote the set of all vertices of a regular tetrahedron. Which points are in the set $ L(L(T))?$
1979 Chisinau City MO, 182
Prove that a section of a cube by a plane cannot be a regular pentagon.
2004 Estonia Team Selection Test, 6
Call a convex polyhedron a [i]footballoid [/i] if it has the following properties.
(1) Any face is either a regular pentagon or a regular hexagon.
(2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it).
Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.
2021 Saint Petersburg Mathematical Olympiad, 3
In the pyramid $SA_1A_2 \cdots A_n$, all sides are equal. Let point $X_i$ be the midpoint of arc $A_iA_{i+1}$ in the circumcircle of $\triangle SA_iA_{i+1}$ for $1 \le i \le n$ with indices taken mod $n$. Prove that the circumcircles of $X_1A_2X_2, X_2A_3X_3, \cdots, X_nA_1X_1$ have a common point.
MathLinks Contest 3rd, 3
We say that a tetrahedron is [i]median [/i] if and only if for each vertex the plane that passes through the midpoints of the edges emerging from the vertex is tangent to the inscribed sphere. Also a tetrahedron is called [i]regular [/i] if all its faces are congruent. Prove that a tetrahedron is regular if and only if it is median.
1992 National High School Mathematics League, 14
$l,m$ are skew lines. Three points $A,B,C$ on line $l$ satisfy that $AB=BC$. Projection of $A,B,C$ on $m$ are $D,E,F$. If $|AD|=\sqrt{15},|BE|=\frac{7}{2}|CF|=\sqrt{10}$, find the distance between $l$ and $m$.
2013 F = Ma, 11
A right-triangular wooden block of mass $M$ is at rest on a table, as shown in figure. Two smaller wooden cubes, both with mass $m$, initially rest on the two sides of the larger block. As all contact surfaces are frictionless, the smaller cubes start sliding down the larger block while the block remains at rest. What is the normal force from the system to the table?
$\textbf{(A) } 2mg\\
\textbf{(B) } 2mg + Mg\\
\textbf{(C) } mg + Mg\\
\textbf{(D) } Mg + mg( \sin \alpha + \sin \beta)\\
\textbf{(E) } Mg + mg( \cos \alpha + \cos \beta)$