This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1967 IMO Shortlist, 2

Is it possible to find a set of $100$ (or $200$) points on the boundary of a cube such that this set remains fixed under all rotations which leave the cube fixed ?

1977 IMO Longlists, 1

A pentagon $ABCDE$ inscribed in a circle for which $BC<CD$ and $AB<DE$ is the base of a pyramid with vertex $S$. If $AS$ is the longest edge starting from $S$, prove that $BS>CS$.

1985 Tournament Of Towns, (096) 5

A square is divided into rectangles. A "chain" is a subset $K$ of the set of these rectangles such that there exists a side of the square which is covered by projections of rectangles of $K$ and such that no point of this side is a projection of two inner points of two inner points of two different rectangles of $K$. (a) Prove that every two rectangles in such a division are members of a certain "chain". (b) Solve the similar problem for a cube, divided into rectangular parallelopipeds (in the definition of chain , replace "side" by"edge") . (A.I . Golberg, V.A. Gurevich)

1968 Bulgaria National Olympiad, Problem 5

The point $M$ is inside the tetrahedron $ABCD$ and the intersection points of the lines $AM,BM,CM$ and $DM$ with the opposite walls are denoted with $A_1,B_1,C_1,D_1$ respectively. It is given also that the ratios $\frac{MA}{MA_1}$, $\frac{MB}{MB_1}$, $\frac{MC}{MC_1}$, and $\frac{MD}{MD_1}$ are equal to the same number $k$. Find all possible values of $k$. [i]K. Petrov[/i]

MIPT student olimpiad spring 2022, 2

Prove that every section of the cube $Q = {[-1,1]}^n \subset R^n$ linear k-dimensional subspace $L\subseteq R^n$ has a diameter of at least $2\sqrt k$.

1964 All Russian Mathematical Olympiad, 053

We have to divide a cube onto $k$ non-overlapping tetrahedrons. For what smallest $k$ is it possible?

1971 IMO Longlists, 49

Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.

2021 BMT, 6

A toilet paper roll is a cylinder of radius $8$ and height $6$ with a hole in the shape of a cylinder of radius $2$ and the same height. That is, the bases of the roll are annuli with inner radius $2$ and outer radius $8$. Compute the surface area of the roll.

1990 Iran MO (2nd round), 1

[b](a)[/b] Consider the set of all triangles $ABC$ which are inscribed in a circle with radius $R.$ When is $AB^2+BC^2+CA^2$ maximum? Find this maximum. [b](b)[/b] Consider the set of all tetragonals $ABCD$ which are inscribed in a sphere with radius $R.$ When is the sum of squares of the six edges of $ABCD$ maximum? Find this maximum, and in this case prove that all of the edges are equal.

2020 Iranian Geometry Olympiad, 5

Find all numbers $n \geq 4$ such that there exists a convex polyhedron with exactly $n$ faces, whose all faces are right-angled triangles. (Note that the angle between any pair of adjacent faces in a convex polyhedron is less than $180^\circ$.) [i]Proposed by Hesam Rajabzadeh[/i]

2003 District Olympiad, 4

a) Let $MNP$ be a triangle such that $\angle MNP> 60^o$. Show that the side $MP$ cannot be the smallest side of the triangle $MNP$. b) In a plane the equilateral triangle $ABC$ is considered. The point $V$ that does not belong to the plane $(ABC)$ is chosen so that $\angle VAB = \angle VBC = \angle VCA$. Show that if $VA = AB$, the tetrahedron $VABC$ is regular. Valentin Vornicu

2004 Italy TST, 1

At the vertices $A, B, C, D, E, F, G, H$ of a cube, $2001, 2002, 2003, 2004, 2005, 2008, 2007$ and $2006$ stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at $A, B, \ldots , H$ can be obtained? $(\text{a})\quad 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2005;$ $(\text{b})\quad 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007;$ $(\text{c})\quad 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.$

2020 AMC 10, 2

Carl has $5$ cubes each having side length $1$, and Kate has $5$ cubes each having side length $2$. What is the total volume of the $10$ cubes? $\textbf{(A) }24 \qquad \textbf{(B) }25 \qquad \textbf{(C) } 28\qquad \textbf{(D) } 40\qquad \textbf{(E) } 45$

II Soros Olympiad 1995 - 96 (Russia), 11.7

Three edges of a parallelepiped lie on three intersecting diagonals of the lateral faces of a triangular prism. Find the ratio of the volumes of the parallelepiped and the prism.

2003 Polish MO Finals, 5

The sphere inscribed in a tetrahedron $ABCD$ touches face $ABC$ at point $H$. Another sphere touches face $ABC$ at $O$ and the planes containing the other three faces at points exterior to the faces. Prove that if $O$ is the circumcenter of triangle $ABC$, then $H$ is the orthocenter of that triangle.

2009 Polish MO Finals, 5

A sphere is inscribed in tetrahedron $ ABCD$ and is tangent to faces $ BCD,CAD,ABD,ABC$ at points $ P,Q,R,S$ respectively. Segment $ PT$ is the sphere's diameter, and lines $ TA,TQ,TR,TS$ meet the plane $ BCD$ at points $ A',Q',R',S'$. respectively. Show that $ A$ is the center of a circumcircle on the triangle $ S'Q'R'$.

1962 Swedish Mathematical Competition, 5

Find the largest cube which can be placed inside a regular tetrahedron with side $1$ so that one of its faces lies on the base of the tetrahedron.

2005 USAMO, 4

Legs $L_1, L_2, L_3, L_4$ of a square table each have length $n$, where $n$ is a positive integer. For how many ordered 4-tuples $(k_1, k_2, k_3, k_4)$ of nonnegative integers can we cut a piece of length $k_i$ from the end of leg $L_i \; (i=1,2,3,4)$ and still have a stable table? (The table is [i]stable[/i] if it can be placed so that all four of the leg ends touch the floor. Note that a cut leg of length 0 is permitted.)

1990 Bundeswettbewerb Mathematik, 4

In the plane there is a worm of length 1. Prove that it can be always covered by means of half of a circular disk of diameter 1. [i]Note.[/i] Under a "worm", we understand a continuous curve. The "half of a circular disk" is a semicircle including its boundary.

1935 Eotvos Mathematical Competition, 3

A real number is assigned to each vertex of a triangular prism so that the number on any vertex is the arithmetic mean of the numbers on the three adjacent vertices. Prove that all six numbers are equal.

Champions Tournament Seniors - geometry, 2008.4

Given a quadrangular pyramid $SABCD$, the basis of which is a convex quadrilateral $ABCD$. It is known that the pyramid can be tangent to a sphere. Let $P$ be the point of contact of this sphere with the base $ABCD$. Prove that $\angle APB + \angle CPD = 180^o$.

2016 Israel Team Selection Test, 3

Prove that there exists an ellipsoid touching all edges of an octahedron if and only if the octahedron's diagonals intersect. (Here an octahedron is a polyhedron consisting of eight triangular faces, twelve edges, and six vertices such that four faces meat at each vertex. The diagonals of an octahedron are the lines connecting pairs of vertices not connected by an edge).

2008 Princeton University Math Competition, A9

In tetrahedron $ABCD$ with circumradius $2$, $AB = 2$, $CD = \sqrt{7}$, and $\angle ABC = \angle BAD = \frac{\pi}{2}$. Find all possible angles between the planes containing $ABC$ and $ABD$.

Durer Math Competition CD 1st Round - geometry, 2012.D3

Show that the planes $ACG$ and $BEH$ defined by the vertices of the cube shown in Figure are parallel. What is their distance if the edge length of the cube is $1$ meter? [img]https://cdn.artofproblemsolving.com/attachments/c/9/21585f6c462e4289161b4a29f8805c3f63ff3e.png[/img]

2015 District Olympiad, 4

Consider the rectangular parallelepiped $ ABCDA'B'C'D' $ and the point $ O $ to be the intersection of $ AB' $ and $ A'B. $ On the edge $ BC, $ pick a point $ N $ such that the plane formed by the triangle $ B'AN $ has to be parallel to the line $ AC', $ and perpendicular to $ DO'. $ Prove, then, that this parallelepiped is a cube.