This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2009 AMC 8, 25

A one-cubic-foot cube is cut into four pieces by three cuts parallel to the top face of the cube. The first cub is $\tfrac12$ foot from the top face. The second cut is $\tfrac13$ foot below the first cut, and the third cut is $\tfrac1{17}$ foot below the second cut. From the top to the bottom the pieces are labeled A, B, C, and D. The pieces are then glued together end to end as shown in the second diagram. What is the total surface area of this solid in square feet? [asy] import three; real d=11/102; defaultpen(fontsize(8)); defaultpen(linewidth(0.8)); currentprojection=orthographic(1,8/15,7/15); draw(unitcube, white, thick(), nolight); void f(real x) { draw((0,1,x)--(1,1,x)--(1,0,x)); } f(d); f(1/6); f(1/2); label("A", (1,0,3/4), W); label("B", (1,0,1/3), W); label("C", (1,0,1/6-d/4), W); label("D", (1,0,d/2), W); label("1/2", (1,1,3/4), E); label("1/3", (1,1,1/3), E); label("1/17", (0,1,1/6-d/4), E);[/asy] [asy] import three; real d=11/102; defaultpen(fontsize(8)); defaultpen(linewidth(0.8)); currentprojection=orthographic(2,8/15,7/15); int t=0; void f(real x) { path3 r=(t,1,x)--(t+1,1,x)--(t+1,1,0)--(t,1,0)--cycle; path3 f=(t+1,1,x)--(t+1,1,0)--(t+1,0,0)--(t+1,0,x)--cycle; path3 u=(t,1,x)--(t+1,1,x)--(t+1,0,x)--(t,0,x)--cycle; draw(surface(r), white, nolight); draw(surface(f), white, nolight); draw(surface(u), white, nolight); draw((t,1,x)--(t+1,1,x)--(t+1,1,0)--(t,1,0)--(t,1,x)--(t,0,x)--(t+1,0,x)--(t+1,1,x)--(t+1,1,0)--(t+1,0,0)--(t+1,0,x)); t=t+1; } f(d); f(1/2); f(1/3); f(1/17); label("D", (1/2, 1, 0), SE); label("A", (1+1/2, 1, 0), SE); label("B", (2+1/2, 1, 0), SE); label("C", (3+1/2, 1, 0), SE);[/asy] $\textbf{(A)}\:6\qquad \textbf{(B)}\:7\qquad \textbf{(C)}\:\frac{419}{51}\qquad \textbf{(D)}\:\frac{158}{17}\qquad \textbf{(E)}\:11$

1989 All Soviet Union Mathematical Olympiad, 508

A polyhedron has an even number of edges. Show that we can place an arrow on each edge so that each vertex has an even number of arrows pointing towards it (on adjacent edges).

2004 Purple Comet Problems, 19

Find $n$ such that $n - 76$ and $n + 76$ are both cubes of positive integers.

2011 Math Prize For Girls Problems, 7

If $z$ is a complex number such that \[ z + z^{-1} = \sqrt{3}, \] what is the value of \[ z^{2010} + z^{-2010} \, ? \]

2019 Jozsef Wildt International Math Competition, W. 60

In all tetrahedron $ABCD$ holds [list=1] [*] $(n(n+2))^{\frac{1}{n}} \sum \limits_{cyc} \left(\frac{(h_a-r)^2}{(h_a^n-r^n)(h_a^{n+2}-r^{n+2})}\right)^{\frac{1}{n}}\leq \frac{1}{r^2}$ [*] $(n(n+2))^{\frac{1}{n}} \sum \limits_{cyc} \left(\frac{(r_a-r)^2}{(r_a^n-r^n)(r_a^{n+2}-r^{n+2})}\right)^{\frac{1}{n}}\leq \frac{1}{r^2}$ [/list] for all $n\in \mathbb{N}^*$

2021 Oral Moscow Geometry Olympiad, 4

Points $STABCD$ in space form a convex octahedron with faces $SAB,SBC,SCD,SDA,TAB,TBC,TCD,TDA$ such that there exists a sphere that is tangent to all of its edges. Prove that $A,B,C,D$ lie in one plane.

1967 IMO Shortlist, 5

Prove that for an arbitrary pair of vectors $f$ and $g$ in the space the inequality \[af^2 + bfg +cg^2 \geq 0\] holds if and only if the following conditions are fulfilled: \[a \geq 0, \quad c \geq 0, \quad 4ac \geq b^2.\]

1993 All-Russian Olympiad, 4

Prove that any two rectangular prisms with equal volumes can be placed in a space such that any horizontal plain that intersects one of the prisms will intersect the other forming a polygon with the same area.

2011 Purple Comet Problems, 30

Four congruent spheres are stacked so that each is tangent to the other three. A larger sphere, $R$, contains the four congruent spheres so that all four are internally tangent to $R$. A smaller sphere, $S$, sits in the space between the four congruent spheres so that all four are externally tangent to $S$. The ratio of the surface area of $R$ to the surface area of $S$ can be written $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.

1991 Tournament Of Towns, (294) 4

(a) Is it possible to place five wooden cubes in space so that each of them has a part of its face touching each of the others? (b) Answer the same question, but with $6$ cubes.

1980 Vietnam National Olympiad, 1

Prove that for any tetrahedron in space, it is possible to find two perpendicular planes such that ratio between the projections of the tetrahedron on the two planes lies in the interval $[\frac{1}{\sqrt{2}}, \sqrt{2}].$

1999 Harvard-MIT Mathematics Tournament, 7

Find an ordered pair $(a,b)$ of real numbers for which $x^2+ax+b$ has a non-real root whose cube is $343$.

1963 Putnam, B6

Let $E$ be a Euclidean space of at most three dimensions. If $A$ is a nonempty subset of $E$, define $S(A)$ to be the set of points that lie on closed segments joining pairs of points of $A$ (a one-point set should be considered to be a special case of a closed segment). For a given nonempty set $A_0$, define $A_n =S(A_{n-1})$ for $n=1,2,\ldots$ Prove that $A_2 =A_3 =\ldots.$

1980 IMO Longlists, 15

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

2004 National High School Mathematics League, 6

Shaft section of a circular cone with vertex $P$ is an isosceles right triangle. $A$ is a point on the circle of the bottom surface, while $B$ is a point inside the circle, $O$ is the center of the circle. If $AB\perp OB$ at $B$, $OH\perp PB$ at $H$, $PA=4$, $C$ is the midpoint of $PA$, then when the volume of triangular pyramid $O-HPC$ takes its maximum value, the length of $OB$ is $\text{(A)}\frac{\sqrt5}{3}\qquad\text{(B)}\frac{2\sqrt5}{3}\qquad\text{(C)}\frac{\sqrt6}{3}\qquad\text{(D)}\frac{2\sqrt6}{3}\qquad$

1994 Czech And Slovak Olympiad IIIA, 2

A cuboid of volume $V$ contains a convex polyhedron $M$. The orthogonal projection of $M$ onto each face of the cuboid covers the entire face. What is the smallest possible volume of polyhedron $M$?

VII Soros Olympiad 2000 - 01, 11.8

Three spheres are tangent to one plane, to a straight line perpendicular to this plane, and in pairs to each other. The radius of the largest sphere is $1$. Within what limits can the radius of the smallest sphere vary?

2007 AMC 12/AHSME, 16

Each face of a regular tetrahedron is painted either red, white or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 27 \qquad \textbf{(D)}\ 54 \qquad \textbf{(E)}\ 81$

1986 Flanders Math Olympiad, 4

Given a cube in which you can put two massive spheres of radius 1. What's the smallest possible value of the side - length of the cube? Prove that your answer is the best possible.

1968 IMO, 4

Prove that every tetrahedron has a vertex whose three edges have the right lengths to form a triangle.

2008 Princeton University Math Competition, A10

A cuboctahedron is the convex hull of (smallest convex set containing) the $12$ points $(\pm 1, \pm 1, 0), (\pm 1, 0, \pm 1), (0, \pm 1, \pm 1)$. Find the cosine of the solid angle of one of the triangular faces, as viewed from the origin. (Take a figure and consider the set of points on the unit sphere centered on the origin such that the ray from the origin through the point intersects the fi gure. The area of that set is the solid angle of the fi gure as viewed from the origin.)

2024 German National Olympiad, 2

Six quadratic mirrors are put together to form a cube $ABCDEFGH$ with a mirrored interior. At each of the eight vertices, there is a tiny hole through which a laser beam can enter and leave the cube. A laser beam enters the cube at vertex $A$ in a direction not parallel to any of the cube's sides. If the beam hits a side, it is reflected; if it hits an edge, the light is absorbed, and if it hits a vertex, it leaves the cube. For each positive integer $n$, determine the set of vertices where the laser beam can leave the cube after exactly $n$ reflections.

2002 Iran Team Selection Test, 3

A "[i]2-line[/i]" is the area between two parallel lines. Length of "2-line" is distance of two parallel lines. We have covered unit circle with some "2-lines". Prove sum of lengths of "2-lines" is at least 2.

2007 ITest, 28

The space diagonal (interior diagonal) of a cube has length $6$. Find the $\textit{surface area}$ of the cube.

2002 IMC, 10

Let $OABC$ be a tetrahedon with $\angle BOC=\alpha,\angle COA =\beta$ and $\angle AOB =\gamma$. The angle between the faces $OAB$ and $OAC$ is $\sigma$ and the angle between the faces $OAB$ and $OBC$ is $\rho$. Show that $\gamma > \beta \cos\sigma + \alpha \cos\rho$.