This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1962 IMO Shortlist, 3

Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.

2007 AMC 10, 23

A pyramid with a square base is cut by a plane that is parallel to its base and is $ 2$ units from the base. The surface area of the smaller pyramid that is cut from the top is half the surface area of the original pyramid. What is the altitude of the original pyramid? $ \textbf{(A)}\ 2\qquad \textbf{(B)}\ 2 \plus{} \sqrt{2}\qquad \textbf{(C)}\ 1 \plus{} 2\sqrt{2}\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ 4 \plus{} 2\sqrt{2}$

2013 Princeton University Math Competition, 3

Consider all planes through the center of a $2\times2\times2$ cube that create cross sections that are regular polygons. The sum of the cross sections for each of these planes can be written in the form $a\sqrt b+c$, where $b$ is a square-free positive integer. Find $a+b+c$.

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

2013 Sharygin Geometry Olympiad, 7

Given five fixed points in the space. It is known that these points are centers of five spheres, four of which are pairwise externally tangent, and all these point are internally tangent to the fifth one. It turns out that it is impossible to determine which of the marked points is the center of the largest sphere. Find the ratio of the greatest and the smallest radii of the spheres.

2019 AMC 12/AHSME, 18

Square pyramid $ABCDE$ has base $ABCD,$ which measures $3$ cm on a side, and altitude $\overline{AE}$ perpendicular to the base$,$ which measures $6$ cm. Point $P$ lies on $\overline{BE},$ one third of the way from $B$ to $E;$ point $Q$ lies on $\overline{DE},$ one third of the way from $D$ to $E;$ and point $R$ lies on $\overline{CE},$ two thirds of the way from $C$ to $E.$ What is the area, in square centimeters, of $\triangle PQR?$ $\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2$

2003 AIME Problems, 5

Consider the set of points that are inside or within one unit of a rectangular parallelepiped (box) that measures 3 by 4 by 5 units. Given that the volume of this set is $(m + n \pi)/p$, where $m$, $n$, and $p$ are positive integers, and $n$ and $p$ are relatively prime, find $m + n + p$.

2000 IMC, 4

Let $OABC$ be a tetrahedon with $\angle BOC=\alpha,\angle COA =\beta$ and $\angle AOB =\gamma$. The angle between the faces $OAB$ and $OAC$ is $\sigma$ and the angle between the faces $OAB$ and $OBC$ is $\rho$. Show that $\gamma > \beta \cos\sigma + \alpha \cos\rho$.

2000 Harvard-MIT Mathematics Tournament, 7

A number $n$ is called multiplicatively perfect if the product of all the positive divisors of $n$ is $n^2$. Determine the number of positive multiplicatively perfect numbers less than $100$.

1991 Arnold's Trivium, 70

Calculate the mean value of the solid angle by which the disc $x^2 + y^2 \le 1$ lying in the plane $z = 0$ is seen from points of the sphere $x^2 + y^2 + (z-2)^2 = 1$.

2021 BMT, T2

Compute the radius of the largest circle that fits entirely within a unit cube.

1996 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 1

On a cube, 27 points are marked in the following manner: one point in each corner, one point on the middle of each edge, one point on the middle of each face, and one in the middle the cube. The number of lines containing three out of these points is A. 33 B. 42 C. 49 D. 72 E. 81

1998 Putnam, 6

Prove that, for any integers $a,b,c$, there exists a positive integer $n$ such that $\sqrt{n^3+an^2+bn+c}$ is not an integer.

2013 AMC 12/AHSME, 18

Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere? $ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$

2012 AMC 12/AHSME, 19

A unit cube has vertices $P_1, P_2, P_3, P_4, P_1', P_2', P_3'$, and $P_4'$. Vertices $P_2, P_3$, and $P_4$ are adjacent to $P_1$, and for $1\leq i\leq 4$, vertices $P_i$ and $P_i'$ are opposite to each other. A regular octahedron has one vertex in each of the segments $P_1P_2, P_1P_3, P_1P_4, P_1'P_2', P_1'P_3'$, and $P_1'P_4'$. What is the octahedron's side length? [asy] import three; size(7.5cm); triple eye = (-4, -8, 3); currentprojection = perspective(eye); triple[] P = {(1, -1, -1), (-1, -1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, -1)}; // P[0] = P[4] for convenience triple[] Pp = {-P[0], -P[1], -P[2], -P[3], -P[4]}; // draw octahedron triple pt(int k){ return (3*P[k] + P[1])/4; } triple ptp(int k){ return (3*Pp[k] + Pp[1])/4; } draw(pt(2)--pt(3)--pt(4)--cycle, gray(0.6)); draw(ptp(2)--pt(3)--ptp(4)--cycle, gray(0.6)); draw(ptp(2)--pt(4), gray(0.6)); draw(pt(2)--ptp(4), gray(0.6)); draw(pt(4)--ptp(3)--pt(2), gray(0.6) + linetype("4 4")); draw(ptp(4)--ptp(3)--ptp(2), gray(0.6) + linetype("4 4")); // draw cube for(int i = 0; i < 4; ++i){ draw(P[1]--P[i]); draw(Pp[1]--Pp[i]); for(int j = 0; j < 4; ++j){ if(i == 1 || j == 1 || i == j) continue; draw(P[i]--Pp[j]); draw(Pp[i]--P[j]); } dot(P[i]); dot(Pp[i]); dot(pt(i)); dot(ptp(i)); } label("$P_1$", P[1], dir(P[1])); label("$P_2$", P[2], dir(P[2])); label("$P_3$", P[3], dir(-45)); label("$P_4$", P[4], dir(P[4])); label("$P'_1$", Pp[1], dir(Pp[1])); label("$P'_2$", Pp[2], dir(Pp[2])); label("$P'_3$", Pp[3], dir(-100)); label("$P'_4$", Pp[4], dir(Pp[4])); [/asy] $ \textbf{(A)}\ \frac{3\sqrt{2}}{4}\qquad\textbf{(B)}\ \frac{7\sqrt{6}}{16}\qquad\textbf{(C)}\ \frac{\sqrt{5}}{2}\qquad\textbf{(D)}\ \frac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \frac{\sqrt{6}}{2} $

2007 Iran MO (3rd Round), 7

A ring is the area between two circles with the same center, and width of a ring is the difference between the radii of two circles. [img]http://i18.tinypic.com/6cdmvi8.png[/img] a) Can we put uncountable disjoint rings of width 1(not necessarily same) in the space such that each two of them can not be separated. [img]http://i19.tinypic.com/4qgx30j.png[/img] b) What's the answer if 1 is replaced with 0?

Ukrainian TYM Qualifying - geometry, XI.13

On the plane there are two cylindrical towers with radii of bases $r$ and $R$. Find the set of all those points of the plane from which these towers are visible at the same angle. Consider the case of more towers.

1984 Putnam, A1

Let $A$ be a solid $a\times b\times c$ rectangular brick, where $a,b,c>0$. Let $B$ be the set of all points which are a distance of at most one from some point of $A$. Express the volume of $B$ as a polynomial in $a,b,$ and $c$.

1937 Moscow Mathematical Olympiad, 034

Two segments slide along two skew lines. On each straight line there is a segment. Consider the tetrahedron with vertices at the endpoints of the segments. Prove that the volume of the tetrahedron does not depend on the position of the segments

1977 Dutch Mathematical Olympiad, 2

Four masts stand on a flat horizontal piece of land at the vertices of a square $ABCD$. The height of the mast on $A$ is $7$ meters, of the mast on $B$ $13$ meters, and of the mast on $C$ $15$ meters. Within the square there is a point $P$ on the ground equidistant from each of the tops of these three masts. (a) What length must the sides of the square be at least for this to be possible? (b) The distance from $P$ to the top of the mast on $D$ is equal to the distance from$ P$ to each of the tops of the three other masts. Calculate the height of the mast at $D$.

1977 IMO Longlists, 44

Let $E$ be a finite set of points in space such that $E$ is not contained in a plane and no three points of $E$ are collinear. Show that $E$ contains the vertices of a tetrahedron $T = ABCD$ such that $T \cap E = \{A,B,C,D\}$ (including interior points of $T$ ) and such that the projection of $A$ onto the plane $BCD$ is inside a triangle that is similar to the triangle $BCD$ and whose sides have midpoints $B,C,D.$

2016 Romania National Olympiad, 2

In a cube $ABCDA'B'C'D' $two points are considered, $M \in (CD')$ and $N \in (DA')$. Show that the $MN$ is common perpendicular to the lines $CD'$ and $DA'$ if and only if $$\frac{D'M}{D'C}=\frac{DN}{DA'} =\frac{1}{3}.$$

2014-2015 SDML (High School), 5

Beth adds the consecutive positive integers $a$, $b$, $c$, $d$, and $e$, and finds that the sum is a perfect square. She then adds $b$, $c$, and $d$ and finds that this sum is a perfect cube. What is the smallest possible value of $e$? $\text{(A) }47\qquad\text{(B) }137\qquad\text{(C) }227\qquad\text{(D) }677\qquad\text{(E) }1127$

2005 AMC 12/AHSME, 25

Let $ S$ be the set of all points with coordinates $ (x,y,z)$, where $ x, y,$ and $ z$ are each chosen from the set $ \{ 0, 1, 2\}$. How many equilateral triangles have all their vertices in $ S$? $ \textbf{(A)}\ 72 \qquad \textbf{(B)}\ 76 \qquad \textbf{(C)}\ 80 \qquad \textbf{(D)}\ 84 \qquad \textbf{(E)}\ 88$

2017 Princeton University Math Competition, A3/B5

A right regular hexagonal prism has bases $ABCDEF$, $A'B'C'D'E'F'$ and edges $AA'$, $BB'$, $CC'$, $DD'$, $EE'$, $FF'$, each of which is perpendicular to both hexagons. The height of the prism is $5$ and the side length of the hexagons is $6$. The plane $P$ passes through points $A$, $C'$, and $E$. The area of the portion of $P$ contained in the prism can be expressed as $m\sqrt{n}$, where $n$ is not divisible by the square of any prime. Find $m+n$.