This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 200

2018 Yasinsky Geometry Olympiad, 6

$AH$ is the altitude of the acute triangle $ABC$, $K$ and $L$ are the feet of the perpendiculars, from point $H$ on sides $AB$ and $AC$ respectively. Prove that the angles $BKC$ and $BLC$ are equal.

2012 Greece JBMO TST, 3

Let $ABC$ be an acute triangle with $AB<AC<BC$, inscribed in circle $c(O,R)$ (with center $O$ and radius $R$). Let $O_1$ be the symmetric point of $O$ wrt $AC$. Circle $c_1(O_1,R)$ intersects $BC$ at $Z$. If the extension of the altitude $AD$ intersects the cicrumscribed circle $c(O,R)$ at point $E$, prove that $EC$ is perpendicular on $AZ$.

2020 Yasinsky Geometry Olympiad, 3

The segments $BF$ and $CN$ are the altitudes in the acute-angled triangle $ABC$. The line $OI$, which connects the centers of the circumscribed and inscribed circles of triangle $ABC$, is parallel to the line $FN$. Find the length of the altitude $AK$ in the triangle $ABC$ if the radii of its circumscribed and inscribed circles are $R$ and $r$, respectively. (Grigory Filippovsky)

2002 Junior Balkan Team Selection Tests - Moldova, 3

Let $ABC$ be a an acute triangle. Points $A_1, B_1$ and $C_1$ are respectively the projections of the vertices $A, B$ and $C$ on the opposite sides of the triangle, the point $H$ is the orthocenter of the triangle, and the point $P$ is the middle of the segment $[AH]$. The lines $BH$ and $A_1C_1$, $P B_1$ and $AB$ intersect respectively at the points $M$ and $N$. Prove that the lines $MN$ and $BC$ are perpendicular.

2011 Oral Moscow Geometry Olympiad, 6

Let $AA_1 , BB_1$, and $CC_1$ be the altitudes of the non-isosceles acute-angled triangle $ABC$. The circles circumscibred around the triangles $ABC$ and $A_1 B_1 C$ intersect again at the point $P , Z$ is the intersection point of the tangents to the circumscribed circle of the triangle $ABC$ conducted at points $A$ and $B$ . Prove that lines $AP , BC$ and $ZC_1$ are concurrent.

1985 Bundeswettbewerb Mathematik, 2

Prove that in every triangle for each of its altitudes: If you project the foof of one altitude on the other two altitudes and on the other two sides of the triangle, those four projections lie on the same line.

1997 Romania National Olympiad, 3

Tags: altitude , geometry
The triangle $ABC$ has $\angle ACB = 30^o$, $BC = 4$ cm and $AB = 3$ cm . Compute the altitudes of the triangle.

1959 AMC 12/AHSME, 2

Tags: altitude , area
Through a point $P$ inside the triangle $ABC$ a line is drawn parallel to the base $AB$, dividing the triangle into two equal areas. If the altitude to $AB$ has a length of $1$, then the distance from $P$ to $AB$ is: $ \textbf{(A)}\ \frac12 \qquad\textbf{(B)}\ \frac14\qquad\textbf{(C)}\ 2-\sqrt2\qquad\textbf{(D)}\ \frac{2-\sqrt2}{2}\qquad\textbf{(E)}\ \frac{2+\sqrt2}{8} $

2010 Bundeswettbewerb Mathematik, 3

Given an acute-angled triangle $ABC$. Let $CB$ be the altitude and $E$ a random point on the line $CD$. Finally, let $P, Q, R$ and $S$ are the projections of $D$ on the straight lines $AC, AE, BE$ and $BC$. Prove that the points $P, Q, R$ and $S$ lie either on a circle or on one straight line.

2011 Sharygin Geometry Olympiad, 14

In triangle $ABC$, the altitude and the median from vertex $A$ form (together with line $BC$) a triangle such that the bisectrix of angle $A$ is the median; the altitude and the median from vertex $B$ form (together with line AC) a triangle such that the bisectrix of angle $B$ is the bisectrix. Find the ratio of sides for triangle $ABC$.

1942 Eotvos Mathematical Competition, 1

Prove that in any triangle, at most one side can be shorter than the altitude from the opposite vertex.

1985 Tournament Of Towns, (106) 6

In triangle $ABC, AH$ is an altitude ($H$ is on $BC$) and $BE$ is a bisector ($E$ is on $AC$) . We are given that angle $BEA$ equals $45^o$ .Prove that angle $EHC$ equals $45^o$ . (I. Sharygin , Moscow)

2019 USAJMO, 4

Let $ABC$ be a triangle with $\angle ABC$ obtuse. The [i]$A$-excircle[/i] is a circle in the exterior of $\triangle ABC$ that is tangent to side $BC$ of the triangle and tangent to the extensions of the other two sides. Let $E$, $F$ be the feet of the altitudes from $B$ and $C$ to lines $AC$ and $AB$, respectively. Can line $EF$ be tangent to the $A$-excircle? [i]Proposed by Ankan Bhattacharya, Zack Chroman, and Anant Mudgal[/i]

1967 All Soviet Union Mathematical Olympiad, 084

a) The maximal height $|AH|$ of the acute-angled triangle $ABC$ equals the median $|BM|$. Prove that the angle $ABC$ isn't greater than $60$ degrees. b) The height $|AH|$ of the acute-angled triangle $ABC$ equals the median $|BM|$ and bisectrix $|CD|$. Prove that the angle $ABC$ is equilateral.

2021 Sharygin Geometry Olympiad, 9.7

Three sidelines of on acute-angled triangle are drawn on the plane. Fyodor wants to draw the altitudes of this triangle using a ruler and a compass. Ivan obstructs him using an eraser. For each move Fyodor may draw one line through two markeed points or one circle centered at a marked point and passing through another marked point. After this Fyodor may mark an arbitrary number of points (the common points of drawn lines, arbitrary points on the drawn lines or arbitrary points on the plane). For each move Ivan erases at most three of marked point. (Fyodor may not use the erased points in his constructions but he may mark them for the second time). They move by turns, Fydors begins. Initially no points are marked. Can Fyodor draw the altitudes?

2003 Switzerland Team Selection Test, 2

In an acute-angled triangle $ABC, E$ and $F$ are the feet of the altitudes from $B$ and $C$, and $G$ and $H$ are the projections of $B$ and $C$ on $EF$, respectively. Prove that $HE = FG$.

Indonesia Regional MO OSP SMA - geometry, 2007.4

In acute triangles $ABC$, $AD, BE ,CF$ are altitudes, with $D, E, F$ on the sides $BC, CA, AB$, respectively. Prove that $$DE + DF \le BC$$

1960 IMO Shortlist, 4

Construct triangle $ABC$, given $h_a$, $h_b$ (the altitudes from $A$ and $B$), and $m_a$, the median from vertex $A$.

2009 Sharygin Geometry Olympiad, 3

Let $AH_a $ and $BH_b$ be the altitudes of triangle $ABC$. Points $P$ and $Q$ are the projections of $H_a$ to $AB$ and $AC$. Prove that line $PQ $ bisects segment $H_aH_b$. (A.Akopjan, K.Savenkov)

1988 Swedish Mathematical Competition, 1

Let $a > b > c$ be sides of a triangle and $h_a,h_b,h_c$ be the corresponding altitudes. Prove that $a+h_a > b+h_b > c+h_c$.

1984 Austrian-Polish Competition, 1

Prove that if the feet of the altitudes of a tetrahedron are the incenters of the corresponding faces, then the tetrahedron is regular.

2011 Belarus Team Selection Test, 2

Points $L$ and $H$ are marked on the sides $AB$ of an acute-angled triangle ABC so that $CL$ is a bisector and $CH$ is an altitude. Let $P,Q$ be the feet of the perpendiculars from $L$ to $AC$ and $BC$ respectively. Prove that $AP \cdot BH = BQ \cdot AH$. I. Gorodnin

2018 Silk Road, 1

Tags: altitude , geometry
In an acute-angled triangle $ABC$ on the sides $AB$, $BC$, $AC$ the points $H$, $L$, $K$ so that $CH \perp AB$, $HL \parallel AC$, $HK \parallel BC$. Let $P$ and $Q$ feet of altitudes of a triangle $HBL$, drawn from the vertices $H$ and $B$ respectively. Prove that the feet of the altitudes of the triangle $AKH$, drawn from the vertices $A$ and $H$ lie on the line $PQ$.

1985 Tournament Of Towns, (080) T1

A median , a bisector and an altitude of a certain triangle intersect at an inner point $O$ . The segment of the bisector from the vertex to $O$ is equal to the segment of the altitude from the vertex to $O$ . Prove that the triangle is equilateral .

2018 Hanoi Open Mathematics Competitions, 5

Let $ABC$ be an acute triangle with $AB = 3$ and $AC = 4$. Suppose that $AH,AO$ and $AM$ are the altitude, the bisector and the median derived from $A$, respectively. If $HO = 3 MO$, then the length of $BC$ is [img]https://cdn.artofproblemsolving.com/attachments/e/c/26cc00629f4c0ab27096b8bdc562c56ff01ce5.png[/img] A. $3$ B. $\frac72$ C. $4$ D. $\frac92$ E. $5$