Found problems: 721
2002 Estonia Team Selection Test, 4
Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.
2013 Junior Balkan Team Selection Tests - Moldova, 7
The points $M$ and $N$ are located respectively on the diagonal $(AC)$ and the side $(BC)$ of the square $ABCD$ such that $MN = MD$. Determine the measure of the angle $MDN$.
1997 All-Russian Olympiad Regional Round, 8.3
On sides $AB$ and $BC$ of an equilateral triangle $ABC$ are taken points $D$ and $K$, and on the side $AC$ , points $E$ and $M$ so that $DA + AE = KC +CM = AB$. Prove that the angle between lines $DM$ and $KE$ is equal to $60^o$.
2013 Dutch Mathematical Olympiad, 3
The sides $BC$ and $AD$ of a quadrilateral $ABCD$ are parallel and the diagonals intersect in $O$. For this quadrilateral $|CD| =|AO|$ and $|BC| = |OD|$ hold. Furthermore $CA$ is the angular bisector of angle $BCD$. Determine the size of angle $ABC$.
[asy]
unitsize(1 cm);
pair A, B, C, D, O;
D = (0,0);
B = 3*dir(180 + 72);
C = 3*dir(180 + 72 + 36);
A = extension(D, D + (1,0), C, C + dir(180 - 36));
O = extension(A, C, B, D);
draw(A--B--C--D--cycle);
draw(B--D);
draw(A--C);
dot("$A$", A, N);
dot("$B$", B, SW);
dot("$C$", C, SE);
dot("$D$", D, N);
dot("$O$", O, E);
[/asy]
Attention: the figure is not drawn to scale.
2011 Saudi Arabia IMO TST, 3
In acute triangle $ABC$, $\angle A = 20^o$. Prove that the triangle is isosceles if and only if $$\sqrt[3]{a^3 + b^3 + c^3 -3abc} = \min\{b, c\}$$, where $a,b, c$ are the side lengths of triangle $ABC$.
Novosibirsk Oral Geo Oly VIII, 2022.4
In triangle $ABC$, angle $C$ is three times the angle $A$, and side $AB$ is twice the side $BC$. What can be the angle $ABC$?
Estonia Open Senior - geometry, 2002.1.4
In a triangle $ABC$ we have $\angle B = 2 \cdot \angle C$ and the angle bisector drawn from $A$ intersects $BC$ in a point $D$ such that $|AB| = |CD|$. Find $\angle A$.
2006 Sharygin Geometry Olympiad, 25
In the tetrahedron $ABCD$ , the dihedral angles at the $BC, CD$, and $DA$ edges are equal to $\alpha$, and for the remaining edges equal to $\beta$. Find the ratio $AB / CD$.
1996 Tournament Of Towns, (485) 3
The two tangents to the incircle of a right-angled triangle $ABC$ that are perpendicular to the hypotenuse $AB$ intersect it at the points $P$ and $Q$. Find $\angle PCQ$.
(M Evdokimov,)
2020 Ukrainian Geometry Olympiad - April, 2
Inside the triangle $ABC$ is point $P$, such that $BP > AP$ and $BP > CP$. Prove that $\angle ABC$ is acute.
Brazil L2 Finals (OBM) - geometry, 2012.4
The figure below shows a regular $ABCDE$ pentagon inscribed in an equilateral triangle $MNP$ . Determine the measure of the angle $CMD$.
[img]http://4.bp.blogspot.com/-LLT7hB7QwiA/Xp9fXOsihLI/AAAAAAAAL14/5lPsjXeKfYwIr5DyRAKRy0TbrX_zx1xHQCK4BGAYYCw/s200/2012%2Bobm%2Bl2.png[/img]
2017 Novosibirsk Oral Olympiad in Geometry, 2
You are given a convex quadrilateral $ABCD$. It is known that $\angle CAD = \angle DBA = 40^o$, $\angle CAB = 60^o$, $\angle CBD = 20^o$. Find the angle $\angle CDB $.
Estonia Open Senior - geometry, 2003.1.2
Four rays spread out from point $O$ in a $3$-dimensional space in a way that the angle between every two rays is $a$. Find $\cos a$.
2005 Abels Math Contest (Norwegian MO), 3a
In the isosceles triangle $\vartriangle ABC$ is $AB = AC$. Let $D$ be the midpoint of the segment $BC$. The points $P$ and $Q$ are respectively on the lines $AD$ and $AB$ (with $Q \ne B$) so that $PQ = PC$. Show that $\angle PQC =\frac12 \angle A $
2016 Saudi Arabia IMO TST, 2
Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$.
Tran Quang Hung
2017 Abels Math Contest (Norwegian MO) Final, 4
Let $a > 0$ and $0 < \alpha <\pi$ be given. Let $ABC$ be a triangle with $BC = a$ and $\angle BAC = \alpha$ , and call the cicumcentre $O$, and the orthocentre $H$. The point $P$ lies on the ray from $A$ through $O$. Let $S$ be the mirror image of $P$ through $AC$, and $T$ the mirror image of $P$ through $AB$. Assume that $SATH$ is cyclic. Show that the length $AP$ depends only on $a$ and $\alpha$.
2009 District Olympiad, 4
Let $ABC$ be an equilateral $ABC$. Points $M, N, P$ are located on the sides $AC, AB, BC$, respectively, such that $\angle CBM= \frac{1}{2} \angle AMN = \frac{1}{3} \angle BNP$ and $\angle CMP = 90 ^o$.
a) Show that $\vartriangle NMB$ is isosceles.
b) Determine $\angle CBM$.
2001 Argentina National Olympiad, 2
Let $\vartriangle ABC$ be a triangle such that angle $\angle ABC$ is less than angle $\angle ACB$. The bisector of angle $\angle BAC$ cuts side $BC$ at $D$. Let $E$ be on side $AB$ such that $\angle EDB = 90^o$ and $F$ on side $AC$ such that $\angle BED = \angle DEF$. Prove that $\angle BAD = \angle FDC$.
Kyiv City MO Juniors Round2 2010+ geometry, 2013.8.3
Inside $\angle BAC = 45 {} ^ \circ$ the point $P$ is selected that the conditions $\angle APB = \angle APC = 45 {} ^ \circ $ are fulfilled. Let the points $M$ and $N$ be the projections of the point $P$ on the lines $AB$ and $AC$, respectively. Prove that $BC\parallel MN $.
(Serdyuk Nazar)
V Soros Olympiad 1998 - 99 (Russia), 9.4
Let $ABC$ be a triangle without obtuse angles, $M$ the midpoint of $BC$, $K$ the midpoint of $BM$. What is the largest value of the angle $\angle KAM$?
2016 Latvia Baltic Way TST, 13
Suppose that $A, B, C$, and $X$ are any four distinct points in the plane with $$\max \,(BX,CX) \le AX \le BC.$$
Prove that $\angle BAC \le 150^o$.
1965 Swedish Mathematical Competition, 1
The feet of the altitudes in the triangle $ABC$ are $A', B', C'$. Find the angles of $A'B'C'$ in terms of the angles $A, B, C$. Show that the largest angle in $A'B'C'$ is at least as big as the largest angle in $ABC$. When is it equal?
2020 Novosibirsk Oral Olympiad in Geometry, 6
Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.
2010 Oral Moscow Geometry Olympiad, 5
Points $K$ and $M$ are taken on the sides $AB$ and $CD$ of square $ABCD$, respectively, and on the diagonal $AC$ - point $L$ such that $ML = KL$. Let $P$ be the intersection point of the segments $MK$ and $BD$. Find the angle $\angle KPL$.
1980 All Soviet Union Mathematical Olympiad, 298
Given equilateral triangle $ABC$. Some line, parallel to $[AC]$ crosses $[AB]$ and $[BC]$ in $M$ and $P$ points respectively. Let $D$ be the centre of $PMB$ triangle, $E$ be the midpoint of the $[AP]$ segment. Find the angles of triangle $DEC$ .