This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2009 Sharygin Geometry Olympiad, 5

Given triangle $ABC$. Point $M$ is the projection of vertex $B$ to bisector of angle $C$. $K$ is the touching point of the incircle with side $BC$. Find angle $\angle MKB$ if $\angle BAC = \alpha$ (V.Protasov)

VI Soros Olympiad 1999 - 2000 (Russia), 11.10

Tags: geometry , angle
In triangle $ABC$, angle $A$ is equal to $a$ and angle $B$ is equal to $2a$. A circle with center at point $C$ of radius $CA$ intersects the line containing the bisector of the exterior angle at vertex $B$, at points $M$ and $N$. Find the angles of triangle $MAN$.

2017 Baltic Way, 15

Tags: polygon , angle , geometry
Let $n \ge 3$ be an integer. What is the largest possible number of interior angles greater than $180^\circ$ in an $n$-gon in the plane, given that the $n$-gon does not intersect itself and all its sides have the same length?

1953 Czech and Slovak Olympiad III A, 2

Tags: geometry , triangle , angle
Let $\alpha,\beta,\gamma$ be angles of a triangle. Two of them can be expressed using an auxiliary angle $\varphi$ in a way that $$\alpha=\varphi+\frac\pi4,\quad\beta=\pi-3\varphi.$$ Show that $\alpha>\gamma.$

Ukrainian TYM Qualifying - geometry, 2014.1

Tags: geometry , angle
In the triangle $ABC$, one of the angles of which is equal to $48^o$, side lengths satisfy $(a-c)(a+c)^2+bc(a+c)=ab^2$. Express in degrees the measures of the other two angles of this triangle.

2005 Sharygin Geometry Olympiad, 16

We took a non-equilateral acute-angled triangle and marked $4$ wonderful points in it: the centers of the inscribed and circumscribed circles, the center of gravity (the point of intersection of the medians) and the intersection point of altitudes. Then the triangle itself was erased. It turned out that it was impossible to establish which of the centers corresponds to each of the marked points. Find the angles of the triangle

2012 Tournament of Towns, 7

Let $AH$ be an altitude of an equilateral triangle $ABC$. Let $I$ be the incentre of triangle $ABH$, and let $L, K$ and $J$ be the incentres of triangles $ABI,BCI$ and $CAI$ respectively. Determine $\angle KJL$.

Novosibirsk Oral Geo Oly IX, 2016.2

Tags: angle , geometry
Bisector of one angle of triangle $ABC$ is equal to the bisector of its external angle at the same vertex (see figure). Find the difference between the other two angles of the triangle. [img]https://cdn.artofproblemsolving.com/attachments/c/3/d2efeb65544c45a15acccab8db05c8314eb5f2.png[/img]

2022 Junior Balkan Team Selection Tests - Moldova, 8

Tags: incenter , geometry , angle
Let $ABC$ be the triangle and $I$ the center of the circle inscribed in this triangle. The point $M$, located on the tangent taken to the point $B$ to the circumscribed circle of the triangle $ABC$, satisfies the relation $AB = MB$. Point $N$, located on the tangent taken to point $C$ to the same circle, satisfies the relation $AC = NC$. Points $M, A$ and $N$ lie on the same side of the line $BC$. Prove that $$\angle BAC + \angle MIN = 180^o.$$

1949-56 Chisinau City MO, 23

Tags: distance , geometry , angle
Inside the angle $ABC$ of $60^o$, point $O$ is selected, which is located at distances from the sides of the angle $a$ and $b$, respectively. Determine the distance from the top of the angle to this point.

2001 All-Russian Olympiad Regional Round, 8.3

All sides of a convex pentagon are equal, and all angles are different. Prove that the maximum and minimum angles are adjacent to the same side of the pentagon.

2021 Durer Math Competition Finals, 16

The angles of a convex quadrilateral form an arithmetic sequence in clockwise order, and its side lengths also form an arithmetic sequence (but not necessarily in clockwise order). If the quadrilateral is not a square, and its shortest side has length $1$, then its perimeter is $a + \sqrt{b}4$, where $ a$ and $b$ are positive integers. What is the value of $a + b$?

Durer Math Competition CD 1st Round - geometry, 2017.C1

Tags: angle , decagon , geometry
The vertices of Durer's favorite regular decagon in clockwise order: $D_1, D_2, D_3, . . . , D_{10}$. What is the angle between the diagonals $D_1D_3$ and $D_2D_5$?

1948 Moscow Mathematical Olympiad, 155

What is the greatest number of rays in space beginning at one point and forming pairwise obtuse angles?

2011 German National Olympiad, 4

Tags: geometry , point , set , angle , maximal , sum
There are two points $A$ and $B$ in the plane. a) Determine the set $M$ of all points $C$ in the plane for which $|AC|^2 +|BC|^2 = 2\cdot|AB|^2.$ b) Decide whether there is a point $C\in M$ such that $\angle ACB$ is maximal and if so, determine this angle.

1986 Tournament Of Towns, (131) 7

On the circumference of a circle are $21$ points. Prove that among the arcs which join any two of these points, at least $100$ of them must subtend an angle at the centre of the circle not exceeding $120^o$ . ( A . F . Sidorenko)

2013 IMAC Arhimede, 5

Let $\Gamma$ be the circumcircle of a triangle $ABC$ and let $E$ and $F$ be the intersections of the bisectors of $\angle ABC$ and $\angle ACB$ with $\Gamma$. If $EF$ is tangent to the incircle $\gamma$ of $\triangle ABC$, then find the value of $\angle BAC$.

2020 Ukrainian Geometry Olympiad - April, 3

Let $H$ be the orthocenter of the acute-angled triangle $ABC$. Inside the segment $BC$ arbitrary point $D$ is selected. Let $P$ be such that $ADPH$ is a parallelogram. Prove that $\angle BCP< \angle BHP$.

1995 Singapore Team Selection Test, 2

$ABC$ is a triangle with $\angle A > 90^o$ . On the side $BC$, two distinct points $P$ and $Q$ are chosen such that $\angle BAP = \angle PAQ$ and $BP \cdot CQ = BC \cdot PQ$. Calculate the size of $\angle PAC$.

1988 Tournament Of Towns, (185) 2

Tags: geometry , angle , altitude
In a triangle two altitudes are not smaller than the sides on to which they are dropped. Find the angles of the triangle.

2017 Flanders Math Olympiad, 2

In triangle $\vartriangle ABC$, $\angle A = 50^o, \angle B = 60^o$ and $\angle C = 70^o$. The point $P$ is on the side $[AB]$ (with $P \ne A$ and $P \ne B$). The inscribed circle of $\vartriangle ABC$ intersects the inscribed circle of $\vartriangle ACP$ at points $U$ and $V$ and intersects the inscribed circle of $\vartriangle BCP$ at points $X$ and $Y$. The rights $UV$ and $XY$ intersect in $K$. Calculate the $\angle UKX$.

2017 BMT Spring, 17

Tags: geometry , angle
Triangle $ABC$ is drawn such that $\angle A = 80^o$, $\angle B = 60^o$, and $\angle C = 40^o$. Let the circumcenter of $\vartriangle ABC$ be $O$, and let $\omega$ be the circle with diameter $AO$. Circle $\omega$ intersects side $AC$ at point $P$. Let M be the midpoint of side $BC$, and let the intersection of $\omega$ and $PM$ be $K$. Find the measure of $\angle MOK$.

Swiss NMO - geometry, 2019.7

Let $ABC$ be a triangle with $\angle CAB = 2 \angle ABC$. Assume that a point $D$ is inside the triangle $ABC$ exists such that $AD = BD$ and $CD = AC$. Show that $\angle ACB = 3 \angle DCB$.

1996 Israel National Olympiad, 3

The angles of an acute triangle $ABC$ at $\alpha , \beta, \gamma$. Let $AD$ be a height, $CF$ a median, and $BE$ the bisector of $\angle B$. Show that $AD,CF$ and $BE$ are concurrent if and only if $\cos \gamma \tan\beta = \sin \alpha$ .

Durer Math Competition CD Finals - geometry, 2011.C5

Given a straight line with points $A, B, C$ and $D$. Construct using $AB$ and $CD$ regular triangles (in the same half-plane). Let $E,F$ be the third vertex of the two triangles (as in the figure) . The circumscribed circles of triangles $AEC$ and $BFD$ intersect in $G$ ($G$ is is in the half plane of triangles). Prove that the angle $AGD$ is $120^o$ [img]https://1.bp.blogspot.com/-66akc83KSs0/X9j2BBOwacI/AAAAAAAAM0M/4Op-hrlZ-VQRCrU8Z3Kc3UCO7iTjv5ZQACLcBGAsYHQ/s0/2011%2BDurer%2BC5.png[/img]