This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2009 Balkan MO Shortlist, G1

In the triangle $ABC, \angle BAC$ is acute, the angle bisector of $\angle BAC$ meets $BC$ at $D, K$ is the foot of the perpendicular from $B$ to $AC$, and $\angle ADB = 45^o$. Point $P$ lies between $K$ and $C$ such that $\angle KDP = 30^o$. Point $Q$ lies on the ray $DP$ such that $DQ = DK$. The perpendicular at $P$ to $AC$ meets $KD$ at $L$. Prove that $PL^2 = DQ \cdot PQ$.

V Soros Olympiad 1998 - 99 (Russia), 11.8

Tags: geometry , angle
Inside triangle $ABC$, point $P$ is taken so that angles $\angle ARB= \angle BPC = \angle CPA= 120^o$. Lines $BP$ and $CP$ intersect lines $AC$ and $AB$ at points $M$ and $K$. It is known that the quadrilateral $AMPK$ has same areq with the triangle $BCP$. What is the angle $\angle BAC$?

Estonia Open Senior - geometry, 2020.2.5

Tags: geometry , ratio , angle
The bisector of the interior angle at the vertex $B$ of the triangle $ABC$ and the perpendicular line on side $BC$ passing through the vertex $C$ intersects at $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $BD$, respectively, with $N$ on the side $AC$. Find all possibilities of the angles of the triangles $ABC$, if it is known that $\frac{| AM |}{| BC |}=\frac{|CD|}{|BD|}$. .

1985 Tournament Of Towns, (090) T1

Tags: geometry , angle
In quadrilateral ABCD it is given that $AB = BC = 1, \angle ABC = 100^o$ , and $\angle CDA = 130^o$ . Find the length of $BD$.

2003 District Olympiad, 1

Let $ABC$ be an equilateral triangle. On the plane $(ABC)$ rise the perpendiculars $AA'$ and $BB'$ on the same side of the plane, so that $AA' = AB$ and $BB' =\frac12 AB$. Determine the measure the angle between the planes $(ABC)$ and $(A'B'C')$.

1970 Kurschak Competition, 1

What is the largest possible number of acute angles in an $n$-gon which is not selfintersecting (no two non-adjacent edges interesect)?

2010 Flanders Math Olympiad, 3

In a triangle $ABC$, $\angle B= 2\angle A \ne 90^o$ . The inner bisector of $B$ intersects the perpendicular bisector of $[AC]$ at a point $D$. Prove that $AB \parallel CD$.

1989 IMO Shortlist, 32

The vertex $ A$ of the acute triangle $ ABC$ is equidistant from the circumcenter $ O$ and the orthocenter $ H.$ Determine all possible values for the measure of angle $ A.$

Novosibirsk Oral Geo Oly IX, 2023.3

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

Novosibirsk Oral Geo Oly VIII, 2016.3

Tags: geometry , square , angle
A square is drawn on a sheet of grid paper on the sides of the cells $ABCD$ with side $8$. Point $E$ is the midpoint of side $BC$, $Q$ is such a point on the diagonal $AC$ such that $AQ: QC = 3: 1$. Find the angle between straight lines $AE$ and $DQ$.

Novosibirsk Oral Geo Oly IX, 2023.7

Tags: geometry , angle
Triangle $ABC$ is given with angles $\angle ABC = 60^o$ and $\angle BCA = 100^o$. On the sides AB and AC, the points $D$ and $E$ are chosen, respectively, in such a way that $\angle EDC = 2\angle BCD = 2\angle CAB$. Find the angle $\angle BED$.

1991 IMO Shortlist, 4

Let $ \,ABC\,$ be a triangle and $ \,P\,$ an interior point of $ \,ABC\,$. Show that at least one of the angles $ \,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $ 30^{\circ }$.

2015 Portugal MO, 2

Let $[ABC]$ be a triangle and $D$ a point between $A$ and $B$. If the triangles $[ABC], [ACD]$ and $[BCD]$ are all isosceles, what are the possible values of $\angle ABC$?

2010 Belarus Team Selection Test, 2.1

Tags: product , ratio , angle , geometry
Point $D$ is marked inside a triangle $ABC$ so that $\angle ADC = \angle ABC + 60^o$, $\angle CDB =\angle CAB + 60^o$, $\angle BDA = \angle BCA + 60^o$. Prove that $AB \cdot CD = BC \cdot AD = CA \cdot BD$. (A. Levin)

1997 German National Olympiad, 3

In a convex quadrilateral $ABCD$ we are given that $\angle CBD = 10^o$, $\angle CAD = 20^o$, $\angle ABD = 40^o$, $\angle BAC = 50^o$. Determine the angles $\angle BCD$ and $\angle ADC$.

1997 Estonia National Olympiad, 2

Tags: geometry , angle , triangle
Side lengths $a,b,c$ of a triangle satisfy $\frac{a^3+b^3+c^3}{a+b+c}= c^2$. Find the measure of the angle opposite to side $c$.

Kyiv City MO 1984-93 - geometry, 1993.9.2

Tags: geometry , area , angle
Let $a, b, c$ be the lengths of the sides of a triangle, and let $S$ be its area. We know that $S = \frac14 (c^2 - a^2 - b^2)$. Prove that $\angle C = 135^o$.

2021 Science ON all problems, 2

Tags: geometry , angle
In triangle $ABC$, we have $\angle ABC=\angle ACB=44^o$. Point $M$ is in its interior such that $\angle MBC=16^o$ and $\angle MCB=30^o$. Prove that $\angle MAC=\angle MBC$. [i] (Andra Elena Mircea)[/i]

1985 Brazil National Olympiad, 2

Given $n$ points in the plane, show that we can always find three which give an angle $\le \pi / n$.

1991 Spain Mathematical Olympiad, 4

Tags: incircle , geometry , angle
The incircle of $ABC$ touches the sides $BC,CA,AB$ at $A' ,B' ,C'$ respectively. The line $A' C'$ meets the angle bisector of $\angle A$ at $D$. Find $\angle ADC$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.2

Given a rectangle $ABCD$ with $AB> BC$. On the side $CD$, take a point $L$ such that $BL$ and $AC$ are perpendicular. Let $K$ be the intersection point of segments $BL$ and $AC$. It is known that segments $AL$. and $DK$ are perpendicular. Find $\angle ACB.$

2013 Peru MO (ONEM), 3

Let $P$ be a point inside the equilateral triangle $ABC$ such that $6\angle PBC = 3\angle PAC = 2\angle PCA$. Find the measure of the angle $\angle PBC$ .

2007 Chile National Olympiad, 6

Given an $\triangle ABC$ isoceles with base $BC$ we note with $M$ the midpoint of said base. Let $X$ be any point on the shortest arc $AM$ of the circumcircle of $\triangle ABM$ and let $T$ be a point on the inside $\angle BMA$ such that $\angle TMX = 90^o$ and $TX = BX$. Show that $\angle MTB - \angle CTM$ does not depend on $X$.

Geometry Mathley 2011-12, 14.3

Let $ABC$ be a triangle inscribed in circle $(I)$ that is tangent to the sides $BC,CA,AB$ at points $D,E, F$ respectively. Assume that $L$ is the intersection of $BE$ and $CF,G$ is the centroid of triangle $DEF,K$ is the symmetric point of $L$ about $G$. If $DK$ meets $EF$ at $P, Q$ is on $EF$ such that $QF = PE$, prove that $\angle DGE + \angle FGQ = 180^o$. Nguyễn Minh Hà

2021 239 Open Mathematical Olympiad, 1

Points $X$ and $Y$ are the midpoints of arcs $AB$ and $BC$ of the circumscribed circle of triangle $ABC$. Point $T$ lies on side $AC$. It turned out that the bisectors of the angles $ATB$ and $BTC$ pass through points $X$ and $Y$ respectively. What angle $B$ can be in triangle $ABC$?