This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2007 German National Olympiad, 4

Find all triangles such that its angles form an arithmetic sequence and the corresponding sides form a geometric sequence.

1998 Belarus Team Selection Test, 3

For any given triangle $A_0B_0C_0$ consider a sequence of triangles constructed as follows: a new triangle $A_1B_1C_1$ (if any) has its sides (in cm) that equal to the angles of $A_0B_0C_0$ (in radians). Then for $\vartriangle A_1B_1C_1$ consider a new triangle $A_2B_2C_2$ (if any) constructed in the similar พay, i.e., $\vartriangle A_2B_2C_2$ has its sides (in cm) that equal to the angles of $A_1B_1C_1$ (in radians), and so on. Determine for which initial triangles $A_0B_0C_0$ the sequence never terminates.

Kyiv City MO Juniors 2003+ geometry, 2010.89.4

Point $O$ is the center of the circumcircle of the acute triangle $ABC$. The line $AO$ intersects the side $BC$ at point $D$ so that $OD = BD = 1/3 BC$ . Find the angles of the triangle $ABC$. Justify the answer.

2002 Junior Balkan Team Selection Tests - Moldova, 10

The circles $C_1$ and $C_2$ intersect at the distinct points $M$ and $N$. Points $A$ and $B$ belong respectively to the circles $C_1$ and $C_2$ so that the chords $[MA]$ and $[MB]$ are tangent at point $M$ to the circles $C_2$ and $C_1$, respectively. To prove it that the angles $\angle MNA$ and $\angle MNB$ are equal.

Novosibirsk Oral Geo Oly VIII, 2020.7

You are given a quadrilateral $ABCD$. It is known that $\angle BAC = 30^o$, $\angle D = 150^o$ and, in addition, $AB = BD$. Prove that $AC$ is the bisector of angle $C$.

Kyiv City MO Juniors Round2 2010+ geometry, 2017.8.2

Triangle $ABC$ is right-angled and isosceles with a right angle at the vertex $C$. On rays $CB$ on vertex $B$ is selected point F, on rays $BA$ on vertex $A$ is selected point G so that $AG = BF.$ The ray $GD$ is drawn so that it intersects with ray $AC$ at point $D$ with $\angle FGD = 45^o$. Find $\angle FDG$. (Bogdan Rublev)

2012 India Regional Mathematical Olympiad, 7

On the extension of chord $AB$ of a circle centroid at $O$ a point $X$ is taken and tangents $XC$ and $XD$ to the circle are drawn from it with $C$ and $D$ lying on the circle, let $E$ be the midpoint of the line segment $CD$. If $\angle OEB = 140^o$ then determine with proof the magnitude of $\angle AOB$.

1997 All-Russian Olympiad Regional Round, 11.7

Are there convex $n$-gonal ($n \ge 4$) and triangular pyramids such that the four trihedral angles of the $n$-gonal pyramid are equal trihedral angles of a triangular pyramid? [hide=original wording] Существуют ли выпуклая n-угольная (n>= 4) и треугольная пирамиды такие, что четыре трехгранных угла n-угольной пирамиды равны трехгранным углам треугольной пирамиды?[/hide]

Kharkiv City MO Seniors - geometry, 2013.11.4

In the triangle $ABC$, the heights $AA_1$ and $BB_1$ are drawn. On the side $AB$, points $M$ and $K$ are chosen so that $B_1K\parallel BC$ and $A_1 M\parallel AC$. Prove that the angle $AA_1K$ is equal to the angle $BB_1M$.

Novosibirsk Oral Geo Oly VIII, 2020.6

Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.

1998 Swedish Mathematical Competition, 4

Tags: area , angle , geometry
$ABCD$ is a quadrilateral with $\angle A = 90o$, $AD = a$, $BC = b$, $AB = h$, and area $\frac{(a+b)h}{2}$. What can we say about $\angle B$?

Kyiv City MO Juniors 2003+ geometry, 2021.8.4

Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and $PM \perp BM$. Prove that $\angle ABM = \angle MBP$. (Mikhail Standenko)

1948 Moscow Mathematical Olympiad, 146

Consider two triangular pyramids $ABCD$ and $A'BCD$, with a common base $BCD$, and such that $A'$ is inside $ABCD$. Prove that the sum of planar angles at vertex $A'$ of pyramid $A'BCD$ is greater than the sum of planar angles at vertex $A$ of pyramid $ABCD$.

2020 Romanian Master of Mathematics Shortlist, G1

Tags: angle , geometry
The incircle of a scalene triangle $ABC$ touches the sides $BC, CA$, and $AB$ at points $D, E$, and $F$, respectively. Triangles $APE$ and $AQF$ are constructed outside the triangle so that \[AP =PE, AQ=QF, \angle APE=\angle ACB,\text{ and }\angle AQF =\angle ABC.\]Let $M$ be the midpoint of $BC$. Find $\angle QMP$ in terms of the angles of the triangle $ABC$. [i]Iran, Shayan Talaei[/i]

2021 Puerto Rico Team Selection Test, 2

Let $ABC$ be a right triangle with right angle at $ B$ and $\angle C=30^o$. If $M$ is midpoint of the hypotenuse and $I$ the incenter of the triangle, show that $ \angle IMB=15^o$.

1990 IMO Shortlist, 9

The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$

2007 Estonia Team Selection Test, 4

In square $ABCD,$ points $E$ and $F$ are chosen in the interior of sides $BC$ and $CD$, respectively. The line drawn from $F$ perpendicular to $AE$ passes through the intersection point $G$ of $AE$ and diagonal $BD$. A point $K$ is chosen on $FG$ such that $|AK|= |EF|$. Find $\angle EKF.$

2016 Argentina National Olympiad Level 2, 2

Point $D$ on the side $BC$ of the acute triangle $ABC$ is chosen so that $AD = AC$. Let $P$ and $Q$ be the feet of the perpendiculars from $C$ and $D$ on the side $AB$, respectively. Suppose that $AP^2 + 3BP^2 = AQ^2 + 3BQ^2$. Determine the measure of angle $\angle ABC$.

2023 Novosibirsk Oral Olympiad in Geometry, 7

Tags: angle , geometry
Triangle $ABC$ is given with angles $\angle ABC = 60^o$ and $\angle BCA = 100^o$. On the sides AB and AC, the points $D$ and $E$ are chosen, respectively, in such a way that $\angle EDC = 2\angle BCD = 2\angle CAB$. Find the angle $\angle BED$.

1946 Moscow Mathematical Olympiad, 112

Tags: minimum , area , angle , geometry
Through a point $M$ inside an angle $a$ line is drawn. It cuts off this angle a triangle of the least possible area. Prove that $M$ is the midpoint of the segment on this line that the angle intercepts.

Kyiv City MO Juniors 2003+ geometry, 2016.8.5

In the triangle $ABC$ the angle bisectors $AD$ and $BE$ are drawn. Prove that $\angle ACB = 60 {} ^ \circ$ if and only if $AE + BD = AB$. (Hilko Danilo)

1989 IMO Longlists, 4

The vertex $ A$ of the acute triangle $ ABC$ is equidistant from the circumcenter $ O$ and the orthocenter $ H.$ Determine all possible values for the measure of angle $ A.$

2015 Oral Moscow Geometry Olympiad, 2

The square $ABCD$ and the equilateral triangle $MKL$ are located as shown in the figure. Find the angle $\angle PQD$. [img]https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjQKgjvzy1WhwkMJbcV_C0iveelYmm75FpaGlWgZ-Ap_uQUiegaKYafelo-J_3rMgKMgpMp5soYc1LVYLI8H4riC6R-f8eq2DiWTGGII08xQkwu7t2KVD4pKX4_IN-gC7DVRhdVZSjbaj2S/s1600/oral+moscow+geometry+2015+8.9+p2.png[/img]

Russian TST 2018, P2

Tags: angle , geometry
Inside the acute-angled triangle $ABC$, the points $P{}$ and $Q{}$ are chosen so that $\angle ACP = \angle BCQ$ and $\angle CBP =\angle ABQ$. The point $Z{}$ is the projection of $P{}$ onto the line $BC$. The point $Q'$ is symmetric to $Q{}$ with respect to $Z{}$. The points $K{}$ and $L{}$ are chosen on the rays $AB$ and $AC$ respectively, so that $Q'K \parallel QC$ and $Q'L \parallel QB$. Prove that $\angle KPL=\angle BPC$.

2005 Estonia Team Selection Test, 1

On a plane, a line $\ell$ and two circles $c_1$ and $c_2$ of different radii are given such that $\ell$ touches both circles at point $P$. Point $M \ne P$ on $\ell$ is chosen so that the angle $Q_1MQ_2$ is as large as possible where $Q_1$ and $Q_2$ are the tangency points of the tangent lines drawn from $M$ to $c_i$ and $c_2$, respectively, differing from $\ell$ . Find $\angle PMQ_1 + \angle PMQ_2$·