This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2020 AMC 10, 20

Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at point $E$, and $AE = 5$. What is the area of quadrilateral $ABCD$? $\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$

2020 South Africa National Olympiad, 2

Tags: rhombus , geometry , square , area
Let $S$ be a square with sides of length $2$ and $R$ be a rhombus with sides of length $2$ and angles measuring $60^\circ$ and $120^\circ$. These quadrilaterals are arranged to have the same centre and the diagonals of the rhombus are parallel to the sides of the square. Calculate the area of the region on which the figures overlap.

2010 Victor Vâlcovici, 3

$ A',B',C' $ are the feet of the heights of an acute-angled triangle $ ABC. $ Calculate $$ \frac{\text{area} (ABC)}{\text{area}\left( A'B'C'\right)} , $$ knowing that $ ABC $ and $ A'B'C' $ have the same center of mass. [i]Carmen[/i] and [i]Viorel Botea[/i]

2019 BMT Spring, 16

Let $ABC$ be a triangle with $AB = 26$, $BC = 51$, and $CA = 73$, and let $O$ be an arbitrary point in the interior of $\vartriangle ABC$. Lines $\ell_1$, $\ell_2$, and $\ell_3$ pass through $O$ and are parallel to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. The intersections of $\ell_1$, $\ell_2$, and $\ell_3$ and the sides of $\vartriangle ABC$ form a hexagon whose area is $A$. Compute the minimum value of $A$.

2020-21 IOQM India, 22

In triangle $ABC$, let $P$ and $R$ be the feet of the perpendiculars from $A$ onto the external and internal bisectors of $\angle ABC$, respectively; and let $Q$ and $S$ be the feet of the perpendiculars from $A$ onto the internal and external bisectors of $\angle ACB$, respectively. If $PQ = 7, QR = 6$ and $RS = 8$, what is the area of triangle $ABC$?

2010 Denmark MO - Mohr Contest, 1

Four right triangles, each with the sides $1$ and $2$, are assembled to a figure as shown. How large a fraction does the area of the small circle make up of that of the big one? [img]https://1.bp.blogspot.com/-XODK1XKCS0Q/XzXDtcA-xAI/AAAAAAAAMWA/zSLPpf3IcX0rgaRtOxm_F2begnVdUargACLcBGAsYHQ/s0/2010%2BMohr%2Bp1.png[/img]

2003 Paraguay Mathematical Olympiad, 4

Triangle $ABC$ is divided into six smaller triangles by lines that pass through the vertices and through a common point inside of the triangle. The areas of four of these triangles are indicated. Calculate the area of triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/9/2/2013de890e438f5bf88af446692b495917b1ff.png[/img]

Kyiv City MO 1984-93 - geometry, 1985.7.3

Tags: geometry , area
$O$ is the point of intersection of the diagonals of the convex quadrilateral $ABCD$. It is known that the areas of triangles $AOB, BOC, COD$ and $DOA$ are expressed in natural numbers. Prove that the product of these areas cannot end in $1985$.

V Soros Olympiad 1998 - 99 (Russia), 10.9

A triangle of area $1$ is cut out of paper. Prove that it can be bent along a straight segment so that the area of the resulting figure is less than $s_0$, where $s_0=\frac{\sqrt5-1}{2}$. Note. The value $s_0$ specified in the condition can be reduced (the smallest value of$s_0$ is unknown to the authors of the problem). If you manage to do this (and justify it), write.

1957 Moscow Mathematical Olympiad, 367

Tags: area , geometry , fixed , square
Two rectangles on a plane intersect at eight points. Consider every other intersection point, they are connected with line segments, these segments form a quadrilateral. Prove that the area of this quadrilateral does not vary under translations of one of the rectangles.

2001 Czech And Slovak Olympiad IIIA, 5

A sheet of paper has the shape of an isosceles trapezoid $C_1AB_2C_2$ with the shorter base $B_2C_2$. The foot of the perpendicular from the midpoint $D$ of $C_1C_2$ to $AC_1$ is denoted by $B_1$. Suppose that upon folding the paper along $DB_1, AD$ and $AC_1$ points $C_1,C_2$ become a single point $C$ and points $B_1,B_2$ become a point $B$. The area of the tetrahedron $ABCD$ is $64$ cm$^3$ . Find the sides of the initial trapezoid.

1989 IMO Longlists, 4

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. He knows that the sides of the carpet are integral numbers of feet and that his two storerooms have the same (unknown) length, but widths of 38 feet and 50 feet respectively. What are the carpet dimensions?

2022 Bulgarian Spring Math Competition, Problem 12.1

$ABCD$ is circumscribed in a circle $k$, such that $[ACB]=s$, $[ACD]=t$, $s<t$. Determine the smallest value of $\frac{4s^2+t^2}{5st}$ and when this minimum is achieved.

1974 Czech and Slovak Olympiad III A, 5

Let $ABCDEF$ be a cyclic hexagon such that \[AB=BC,\quad CD=DE,\quad EF=FA.\] Show that \[[ACE]\le[BDF]\] and determine when the equality holds. ($[XYZ]$ denotes the area of the triangle $XYZ.$)

Denmark (Mohr) - geometry, 2018.2

Tags: geometry , circles , area
The figure shows a large circle with radius $2$ m and four small circles with radii $1$ m. It is to be painted using the three shown colours. What is the cost of painting the figure? [img]https://1.bp.blogspot.com/-oWnh8uhyTIo/XzP30gZueKI/AAAAAAAAMUY/GlC3puNU_6g6YRf6hPpbQW8IE8IqMP3ugCLcBGAsYHQ/s0/2018%2BMohr%2Bp2.png[/img]

1966 IMO Longlists, 52

A figure with area $1$ is cut out of paper. We divide this figure into $10$ parts and color them in $10$ different colors. Now, we turn around the piece of paper, divide the same figure on the other side of the paper in $10$ parts again (in some different way). Show that we can color these new parts in the same $10$ colors again (hereby, different parts should have different colors) such that the sum of the areas of all parts of the figure colored with the same color on both sides is $\geq \frac{1}{10}.$

1988 Tournament Of Towns, (165) 2

We are given convex quadrilateral $ABCD$. The midpoints of $BC$ and $DA$ are $M$ and $N$ respectively. The diagonal $AC$ divides $MN$ in half. Prove that the areas of triangles $ABC$ and $ACD$ are equal .

2003 Junior Balkan Team Selection Tests - Romania, 4

Two unit squares with parallel sides overlap by a rectangle of area $1/8$. Find the extreme values of the distance between the centers of the squares.

Denmark (Mohr) - geometry, 2021.4

Given triangle $ABC$ with $|AC| > |BC|$. The point $M$ lies on the angle bisector of angle $C$, and $BM$ is perpendicular to the angle bisector. Prove that the area of triangle AMC is half of the area of triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/4/2/1b541b76ec4a9c052b8866acbfea9a0ce04b56.png[/img]

2020 BMT Fall, 19

Tags: geometry , circles , area
Alice is standing on the circumference of a large circular room of radius $10$. There is a circular pillar in the center of the room of radius $5$ that blocks Alice’s view. The total area in the room Alice can see can be expressed in the form $\frac{m\pi}{n} +p\sqrt{q}$, where $m$ and $n$ are relatively prime positive integers and $p$ and $q$ are integers such that $q$ is square-free. Compute $m + n + p + q$. (Note that the pillar is not included in the total area of the room.) [img]https://cdn.artofproblemsolving.com/attachments/5/1/26e8aa6d12d9dd85bd5b284b6176870c7d11b1.png[/img]

Estonia Open Junior - geometry, 1996.2.4

A pentagon (not necessarily convex) has all sides of length $1$ and its product of cosine of any four angles equal to zero. Find all possible values of the area of such a pentagon.

2005 Sharygin Geometry Olympiad, 14

Let $P$ be an arbitrary point inside the triangle $ABC$. Let $A_1, B_1$ and $C_1$ denote the intersection points of the straight lines $AP, BP$ and $CP$, respectively, with the sides $BC, CA$ and $AB$. We order the areas of the triangles $AB_1C_1,A_1BC_1,A_1B_1C$. Denote the smaller by $S_1$, the middle by $S_2$, and the larger by $S_3$. Prove that $\sqrt{S_1 S_2} \le S \le \sqrt{S_2 S_3}$ ,where $S$ is the area of the triangle $A_1B_1S_1$.

2011 Saudi Arabia BMO TST, 3

In an acute triangle $ABC$ the angle bisector $AL$, $L \in BC$, intersects its circumcircle at $N$. Let $K$ and $M$ be the projections of $L$ onto sides $AB$ and $AC$. Prove that triangle $ABC$ and quadrilateral $A K N M$ have equal areas.

2022 Peru MO (ONEM), 2

Tags: geometry , area
Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$ and let $G$ be the point of the segment $AD$ such that $AG = 2GD$. Let $E$ and $F$ be points on the sides $AB$ and $AC$, respectively, such that$ G$ lies on the segment $EF$. Let $M$ and $N$ be points of the segments $AE$ and $AF$, respectively, such that $ME = EB$ and $NF = FC$. a) Prove that the area of the quadrilateral $BMNC$ is equal to four times the area of the triangle $DEF$. b) Prove that the quadrilaterals $MNFE$ and $AMDN$ have the same area.

2013 Saudi Arabia BMO TST, 3

Find the area of the set of points of the plane whose coordinates $(x, y)$ satisfy $x^2 + y^2 \le 4|x| + 4|y|$.