This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

1996 Singapore Senior Math Olympiad, 1

$PQ, CD$ are parallel chords of a circle. The tangent at $D$ cuts $PQ$ at $T$ and $B$ is the point of contact of the other tangent from $T$ (Fig. ). Prove that $BC$ bisects $PQ$. [img]https://cdn.artofproblemsolving.com/attachments/2/f/22f69c03601fbb8e388e319cd93567246b705c.png[/img]

2003 Dutch Mathematical Olympiad, 4

In a circle with center $M$, two chords $AC$ and $BD$ intersect perpendicularly. The circle of diameter $AM$ intersects the circle of diameter $BM$ besides $M$ also in point $P$. The circle of diameter $BM$ intersects the circle with diameter $CM$ besides $M$ also in point $Q$. The circle of diameter $CM$ intersects the circle of diameter $DM$ besides $M$ also in point $R$. The circle of diameter $DM$ intersects the circle of diameter $AM$ besides $M$ also in point $S$. Prove that quadrilateral $PQRS$ is a rectangle. [asy] unitsize (3 cm); pair A, B, C, D, M, P, Q, R, S; M = (0,0); A = dir(170); C = dir(10); B = dir(120); D = dir(240); draw(Circle(M,1)); draw(A--C); draw(B--D); draw(Circle(A/2,1/2)); draw(Circle(B/2,1/2)); draw(Circle(C/2,1/2)); draw(Circle(D/2,1/2)); P = (A + B)/2; Q = (B + C)/2; R = (C + D)/2; S = (D + A)/2; dot("$A$", A, A); dot("$B$", B, B); dot("$C$", C, C); dot("$D$", D, D); dot("$M$", M, E); dot("$P$", P, SE); dot("$Q$", Q, SE); dot("$R$", R, NE); dot("$S$", S, NE); [/asy]

2000 IMO Shortlist, 1

In the plane we are given two circles intersecting at $ X$ and $ Y$. Prove that there exist four points with the following property: (P) For every circle touching the two given circles at $ A$ and $ B$, and meeting the line $ XY$ at $ C$ and $ D$, each of the lines $ AC$, $ AD$, $ BC$, $ BD$ passes through one of these points.

2004 Federal Competition For Advanced Students, P2, 3

A trapezoid $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle $k$. Let $k_a$ and $k_c$ respectively be the circles with diameters $AB$ and $CD$. Compute the area of the region which is inside the circle $k$, but outside the circles $k_a$ and $k_c$.

Kvant 2019, M2553

A circle centred at $I$ is tangent to the sides $BC, CA$, and $AB$ of an acute-angled triangle $ABC$ at $A_1, B_1$, and $C_1$, respectively. Let $K$ and $L$ be the incenters of the quadrilaterals $AB_1IC_1$ and $BA_1IC_1$, respectively. Let $CH$ be an altitude of triangle $ABC$. Let the internal angle bisectors of angles $AHC$ and $BHC$ meet the lines $A_1C_1$ and $B_1C_1$ at $P$ and $Q$, respectively. Prove that $Q$ is the orthocenter of the triangle $KLP$. Kolmogorov Cup 2018, Major League, Day 3, Problem 1; A. Zaslavsky

2006 Hanoi Open Mathematics Competitions, 7

Tags: geometry , circles
On the circle $(O)$ of radius $15$ cm are given $2$ points $A, B$. The altitude $OH$ of the triangle $OAB$ intersect $(O)$ at $C$. What is $AC$ if $AB = 16$ cm?

1917 Eotvos Mathematical Competition, 3

Let $A$ and $B$ be two points inside a given circle $k$. Prove that there exist (infinitely many) circles through $A$ and $B$ which lie entirely in $k$.

2020 Ukrainian Geometry Olympiad - December, 5

Tags: geometry , circles
Let $\Gamma_1$, $\Gamma_2$ be two circles, where$ \Gamma_1$ has a smaller radius, intersect at two points $A$ and $B$. Points $C, D$ lie on $\Gamma_1$, $\Gamma_2$ respectively so that the point $A$ is the midpoint of the segment $CD$ . Line$ CB$ intersects the circle $\Gamma_2$ for the second time at the point $F$, line $DB$ intersects the circle $\Gamma_1$ for the second time at the point $E$. The perpendicular bisectors of the segments $CD$ and $EF$ intersect at a point $P$. Knowing that $CA =12$ and $PE = 5$ , find $AP$.

2020 Malaysia IMONST 1, 3

Tags: circles , geometry , square
Given a square with area $A$. A circle lies inside the square, such that the circle touches all sides of the square. Another square with area $B$ lies inside the circle, such that all its vertices lie on the circle. Find the value of $\frac{A}{B}.$

2018 JBMO TST-Turkey, 3

Let $H$ be the orthocenter of an acute angled triangle $ABC$. Circumcircle of the triangle $ABC$ and the circle of diameter $[AH]$ intersect at point $E$, different from $A$. Let $M$ be the midpoint of the small arc $BC$ of the circumcircle of the triangle $ABC$ and let $N$ the midpoint of the large arc $BC$ of the circumcircle of the triangle $BHC$ Prove that points $E, H, M, N$ are concyclic.

2020-21 KVS IOQM India, 24

Two circles $S_1$ and $S_2$, of radii $6$ units and $3$ units respectively, are tangent to each other, externally. Let $AC$ and $BD$ be their direct common tangents with $A$ and $B$ on $S_1$, and $C$ and $D$ on $S_2$. Find the area of quadrilateral $ABDC$ to the nearest Integer.

1972 IMO Longlists, 30

Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc. (a) Prove the relation \[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \] where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that \[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\] (b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.

2019 Romanian Master of Mathematics Shortlist, G4 ver.II

Let $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. A point $D$ is chosen on the internal bisector of $\angle ACB$ so that the points $D$ and $C$ are separated by $AB$. A circle $\omega$ centered at $D$ is tangent to the segment $AB$ at $E$. The tangents to $\omega$ through $C$ meet the segment $AB$ at $K$ and $L$, where $K$ lies on the segment $AL$. A circle $\Omega_1$ is tangent to the segments $AL, CL$, and also to $\Omega$ at point $M$. Similarly, a circle $\Omega_2$ is tangent to the segments $BK, CK$, and also to $\Omega$ at point $N$. The lines $LM$ and $KN$ meet at $P$. Prove that $\angle KCE = \angle LCP$. Poland

2018 Hanoi Open Mathematics Competitions, 10

There are $100$ school students from two clubs $A$ and $B$ standing in circle. Among them $62$ students stand next to at least one student from club $A$, and $54$ students stand next to at least one student from club $B$. 1) How many students stand side-by-side with one friend from club $A$ and one friend from club $B$? 2) What is the number of students from club $A$?

2015 Romania Team Selection Tests, 1

Two circles $\gamma $ and $\gamma'$ cross one another at points $A$ and $B$ . The tangent to $\gamma'$ at $A$ meets $\gamma$ again at $C$ , the tangent to $\gamma$ at $A$ meets $\gamma'$ again at $C'$ , and the line $CC'$ separates the points $A$ and $B$ . Let $\Gamma$ be the circle externally tangent to $\gamma$ , externally tangent to $\gamma'$ , tangent to the line $CC'$, and lying on the same side of $CC'$ as $B$ . Show that the circles $\gamma$ and $\gamma'$ intercept equal segments on one of the tangents to $\Gamma$ through $A$ .

2017 AMC 8, 22

Tags: circles , traingles
In the right triangle $ABC$, $AC=12$, $BC=5$, and angle $C$ is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle? [asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("$A$", (0,0), W); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$12$", (6, 0), S); label("$5$", (12, 2.5), E);[/asy] $\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{13}{5}\qquad\textbf{(C) }\frac{59}{18}\qquad\textbf{(D) }\frac{10}{3}\qquad\textbf{(E) }\frac{60}{13}$

1951 Poland - Second Round, 6

The given points are $ A $ and $ B $ and the circle $ k $. Draw a circle passing through the points $ A $ and $ B $ and defining, at the intersection with the circle $ k $, a common chord of a given length $ d $.

2012 Polish MO Finals, 3

Triangle $ABC$ with $AB = AC$ is inscribed in circle $o$. Circles $o_1$ and $o_2$ are internally tangent to circle $o$ in points $P$ and $Q$, respectively, and they are tangent to segments $AB$ and $AC$, respectively, and they are disjoint with the interior of triangle $ABC$. Let $m$ be a line tangent to circles $o_1$ and $o_2$, such that points $P$ and $Q$ lie on the opposite side than point $A$. Line $m$ cuts segments $AB$ and $AC$ in points $K$ and $L$, respectively. Prove, that intersection point of lines $PK$ and $QL$ lies on bisector of angle $BAC$.

1998 Portugal MO, 5

Let $F$ be the midpoint of circle arc $AB$, and let $M$ be a point on the arc such that $AM <MB$. The perpendicular drawn from point $F$ on $AM$ intersects $AM$ at point $T$. Show that $T$ bisects the broken line $AMB$, that is $AT =TM+MB$. KöMaL Gy. 2404. (March 1987), Archimedes of Syracuse

Estonia Open Senior - geometry, 1996.1.4

A unit square has a circle of radius $r$ with center at it's midpoint. The four quarter circles are centered on the vertices of the square and are tangent to the central circle (see figure). Find the maximum and minimum possible value of the area of the striped figure in the figure and the corresponding values of $r$ such these, the maximum and minimum are achieved. [img]https://2.bp.blogspot.com/-DOT4_B5Mx-8/XnmsTlWYfyI/AAAAAAAALgs/TVYkrhqHYGAeG8eFuqFxGDCTnogVbQFUwCK4BGAYYCw/s400/96%2Bestonia%2Bopen%2Bs1.4.png[/img]

1959 AMC 12/AHSME, 21

If $p$ is the perimeter of an equilateral triangle inscribed in a circle, the area of the circle is: $ \textbf{(A)}\ \frac{\pi p^2}{3} \qquad\textbf{(B)}\ \frac{\pi p^2}{9}\qquad\textbf{(C)}\ \frac{\pi p^2}{27}\qquad\textbf{(D)}\ \frac{\pi p^2}{81} \qquad\textbf{(E)}\ \frac{\pi p^2 \sqrt3}{27} $

2016 Tournament Of Towns, 2

Tags: circles , geometry , locus
On plane there is fixed ray $s$ with vertex $A$ and a point $P$ not on the line which contains $s$. We choose a random point $K$ which lies on ray. Let $N$ be a point on a ray outside $AK$ such that $NK=1$. Let $M$ be a point such that $NM=1,M \in PK$ and $M!=K.$ Prove that all lines $NM$, provided by some point $K$, touch some fixed circle.

2021 Science ON all problems, 3

Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $P$. A random line $\ell$ cuts $\omega_1$ at $A$ and $C$ and $\omega_2$ at $B$ and $D$ (points $A,C,B,D$ are in this order on $\ell$). Line $AP$ meets $\omega_2$ again at $E$ and line $BP$ meets $\omega_1$ again at $F$. Prove that the radical axis of circles $(PCD)$ and $(PEF)$ is parallel to $\ell$. \\ \\ [i](Vlad Robu)[/i]

1992 IMO, 1

In the plane let $\,C\,$ be a circle, $\,L\,$ a line tangent to the circle $\,C,\,$ and $\,M\,$ a point on $\,L$. Find the locus of all points $\,P\,$ with the following property: there exists two points $\,Q,R\,$ on $\,L\,$ such that $\,M\,$ is the midpoint of $\,QR\,$ and $\,C\,$ is the inscribed circle of triangle $\,PQR$.

2012 Israel National Olympiad, 1

In the picture below, the circles are tangent to each other and to the edges of the rectangle. The larger circle's radius equals 1. Determine the area of the rectangle. [img]https://i.imgur.com/g3GUg4Z.png[/img]