This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2010 Dutch IMO TST, 4

Let $ABCD$ be a square with circumcircle $\Gamma_1$. Let $P$ be a point on the arc $AC$ that also contains $B$. A circle $\Gamma_2$ touches $\Gamma_1$ in $P$ and also touches the diagonal $AC$ in $Q$. Let $R$ be a point on $\Gamma_2$ such that the line $DR$ touches $\Gamma_2$. Proof that $|DR| = |DA|$.

2013 Greece Team Selection Test, 4

Given are $n$ different concentric circles on the plane.Inside the disk with the smallest radius (strictly inside it),we consider two distinct points $A,B$.We consider $k$ distinct lines passing through $A$ and $m$ distinct lines passing through $B$.There is no line passing through both $A$ and $B$ and all the lines passing through $k$ intersect with all the lines passing through $B$.The intersections do not lie on some of the circles.Determine the maximum and the minimum number of regions formed by the lines and the circles and are inside the circles.

2002 Olympic Revenge, 2

\(ABCD\) is a inscribed quadrilateral. \(P\) is the intersection point of its diagonals. \(O\) is its circumcenter. \(\Gamma\) is the circumcircle of \(ABO\). \(\Delta\) is the circumcircle of \(CDO\). \(M\) is the midpoint of arc \(AB\) on \(\Gamma\) who doesn't contain \(O\). \(N\) is the midpoint of arc \(CD\) on \(\Delta\) who doesn't contain \(O\). Show that \(M,N,P\) are collinear.

2003 Kazakhstan National Olympiad, 6

Let the point $ B $ lie on the circle $ S_1 $ and let the point $ A $, other than the point $ B $, lie on the tangent to the circle $ S_1 $ passing through the point $ B $. Let a point $ C $ be chosen outside the circle $ S_1 $, so that the segment $ AC $ intersects $ S_1 $ at two different points. Let the circle $ S_2 $ touch the line $ AC $ at the point $ C $ and the circle $ S_1 $ at the point $ D $, on the opposite side from the point $ B $ with respect to the line $ AC $. Prove that the center of the circumcircle of triangle $ BCD $ lies on the circumcircle of triangle $ ABC $.

1968 Spain Mathematical Olympiad, 3

Tags: circles , square , geometry
Given a square whose side measures $a$, consider the set of all points of its plane through which passes a circumference of radius whose circle contains to the quoted square. You are asked to prove that the contour of the figure formed by the points with this property is formed by arcs of circumference, and determine the positions, their centers, their radii and their lengths.

Kyiv City MO Juniors 2003+ geometry, 2014.9.3

Two circles ${{c} _ {1}}, \, \, {{c} _ {2}}$ pass through the center $O$ of the circle $c$ and touch it internally in points $A$ and $B$, respectively. Prove that the line $AB$ passes though a common point of circles ${{c} _ {1}}, \, \, {{c} _ {2}} $.

1967 IMO Shortlist, 4

Let $k_1$ and $k_2$ be two circles with centers $O_1$ and $O_2$ and equal radius $r$ such that $O_1O_2 = r$. Let $A$ and $B$ be two points lying on the circle $k_1$ and being symmetric to each other with respect to the line $O_1O_2$. Let $P$ be an arbitrary point on $k_2$. Prove that \[PA^2 + PB^2 \geq 2r^2.\]

1983 Bulgaria National Olympiad, Problem 4

Tags: circles , square , geometry
Find the smallest possible side of a square in which five circles of radius $1$ can be placed, so that no two of them have a common interior point.

1979 IMO Shortlist, 22

Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$

2016 Bangladesh Mathematical Olympiad, 5

Suppose there are $m$ Martians and $n$ Earthlings at an intergalactic peace conference. To ensure the Martians stay peaceful at the conference, we must make sure that no two Martians sit together, such that between any two Martians there is always at least one Earthling. (a) Suppose all $m + n$ Martians and Earthlings are seated in a line. How many ways can the Earthlings and Martians be seated in a line? (b) Suppose now that the $m+n$ Martians and Earthlings are seated around a circular round-table. How many ways can the Earthlings and Martians be seated around the round-table?

1998 Bosnia and Herzegovina Team Selection Test, 4

Circle $k$ with radius $r$ touches the line $p$ in point $A$. Let $AB$ be a dimeter of circle and $C$ an arbitrary point of circle distinct from points $A$ and $B$. Let $D$ be a foot of perpendicular from point $C$ to line $AB$. Let $E$ be a point on extension of line $CD$, over point $D$, such that $ED=BC$. Let tangents on circle from point $E$ intersect line $p$ in points $K$ and $N$. Prove that length of $KN$ does not depend from $C$

2018 Dutch BxMO TST, 1

We have $1000$ balls in $40$ different colours, $25$ balls of each colour. Determine the smallest $n$ for which the following holds: if you place the $1000$ balls in a circle, in any arbitrary way, then there are always $n$ adjacent balls which have at least $20$ different colours.

2006 Sharygin Geometry Olympiad, 20

Four points are given $A, B, C, D$. Points $A_1, B_1, C_1,D_1$ are orthocenters of the triangles $BCD, CDA, DAB, ABC$ and $A_2, B_2, C_2,D_2$ are orthocenters of the triangles $B_1C_1D_1, C_1D_1A_1, D_1A_1B_1,A_1B_1C_1$ etc. Prove that the circles passing through the midpoints of the sides of all the triangles intersect at one point.

2018 Oral Moscow Geometry Olympiad, 3

A circle is fixed, point $A$ is on it and point $K$ outside the circle. The secant passing through $K$ intersects circle at points $P$ and $Q$. Prove that the orthocenters of the triangle $APQ$ lie on a fixed circle.

2009 Bosnia and Herzegovina Junior BMO TST, 4

On circle there are $2009$ positive integers which sum is $7036$. Show that it is possible to find two pairs of neighboring numbers such that sum of both pairs is greater or equal to $8$

2017 Thailand Mathematical Olympiad, 10

A lattice point is defined as a point on the plane with integer coordinates. Show that for all positive integers $n$, there is a circle on the plane with exactly n lattice points in its interior (not including its boundary).

1983 IMO, 2

Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.

2013 Korea Junior Math Olympiad, 2

A pentagon $ABCDE$ is inscribed in a circle $O$, and satis es $AB = BC , AE = DE$. The circle that is tangent to $DE$ at $E$ and passing $A$ hits $EC$ at $F$ and $BF$ at $G (\ne F)$. Let $DG\cap O = H (\ne D)$. Prove that the tangent to $O$ at $E$ is perpendicular to $HA$.

2008 Postal Coaching, 2

Tags: ratio , geometry , circles
Let $ABC$ be an equilateral triangle, and let $K, L,M$ be points respectively on $BC, CA, AB$ such that $BK/KC = CL/LA = AM/MB =\lambda $. Find all values of $\lambda$ such that the circle with $BC$ as a diameter completely covers the triangle bounded by the lines $AK,BL,CM$.

2013 Greece JBMO TST, 2

Consider $n$ different points lying on a circle, such that there are not three chords defined by that point that pass through the same interior point of the circle. a) Find the value of $n$, if the numbers of triangles that are defined using $3$ of the n points is equal to $2n$ b) Find the value of $n$, if the numbers of the intersection points of the chords that are interior to the circle is equal to $5n$.

1984 IMO Shortlist, 18

Inside triangle $ABC$ there are three circles $k_1, k_2, k_3$ each of which is tangent to two sides of the triangle and to its incircle $k$. The radii of $k_1, k_2, k_3$ are $1, 4$, and $9$. Determine the radius of $k.$

2004 Bosnia and Herzegovina Team Selection Test, 1

Circle $k$ with center $O$ is touched from inside by two circles in points $S$ and $T,$ respectively. Let those two circles intersect at points $M$ and $N$, such that $N$ is closer to line $ST$. Prove that $OM$ and $MN$ are perpendicular iff $S$, $N$ and $T$ are collinear

2014 Poland - Second Round, 5.

Tags: circles , geometry
Circles $o_1$ and $o_2$ tangent to some line at points $A$ and $B$, respectively, intersect at points $X$ and $Y$ ($X$ is closer to the line $AB$). Line $AX$ intersects $o_2$ at point $P\neq X$. Tangent to $o_2$ at point $P$ intersects line $AB$ at point $Q$. Prove that $\sphericalangle XYB = \sphericalangle BYQ$.

1990 Tournament Of Towns, (244) 2

Two circles $c$ and $d$ are situated in the plane each outside the other. The points $C$ and $D$ are located on circles $c$ and $d$ respectively, so as to be as far apart as possible. Two smaller circles are constructed inside $c$ and $d$. Of these the first circle touches $c$ and the two tangents drawn from $C$ to $d$, while the second circle touches $d$ and the two tangents from $D$ to $c$. Prove that the small circles are equal. (J. Tabov, Sofia)

2013 German National Olympiad, 3

Given two circles $k_1$ and $k_2$ which intersect at $Q$ and $Q'.$ Let $P$ be a point on $k_2$ and inside of $k_1 $ such that the line $PQ$ intersects $k_1$ in a point $X\ne Q$ and such that the tangent to $k_1$ at $X$ intersects $k_2$ in points $A$ and $B.$ Let $k$ be the circle through $A,B$ which is tangent to the line through $P$ parallel to $AB.$ Prove that the circles $k_1$ and $k$ are tangent.