Found problems: 821
Denmark (Mohr) - geometry, 1999.1
In a coordinate system, a circle with radius $7$ and center is on the y-axis placed inside the parabola with equation $y = x^2$ , so that it just touches the parabola in two points. Determine the coordinate set for the center of the circle.
1971 All Soviet Union Mathematical Olympiad, 147
Given an unit square and some circles inside. Radius of each circle is less than $0.001$, and there is no couple of points belonging to the different circles with the distance between them $0.001$ exactly. Prove that the area, covered by the circles is not greater than $0.34$.
2003 IMO Shortlist, 5
Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$.
[i]Radu Gologan, Romania[/i]
[hide="Remark"]
The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url].
[/hide]
Estonia Open Senior - geometry, 1997.2.3
The figure shows a square and three circles of equal radius tangent to each other and square passes. Find the radius of the circles if the square length is $1$.
[img]http://3.bp.blogspot.com/-iIjwupkz7DQ/XnrIRhKIJnI/AAAAAAAALhA/clERrIDqEtcujzvZk_qu975wsTjKaxCLQCK4BGAYYCw/s400/97%2Bestonia%2Bopen%2Bs2.3.png[/img]
1959 AMC 12/AHSME, 43
The sides of a triangle are $25,39,$ and $40$. The diameter of the circumscribed circle is:
$ \textbf{(A)}\ \frac{133}{3}\qquad\textbf{(B)}\ \frac{125}{3}\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 41\qquad\textbf{(E)}\ 40 $
2011 Junior Balkan Team Selection Tests - Moldova, 7
In the rectangle $ABCD$ with $AB> BC$, the perpendicular bisecotr of $AC$ intersects the side $CD$ at point $E$. The circle with the center at point $E$ and the radius $AE$ intersects again the side $AB$ at point $F$. If point $O$ is the orthogonal projection of point $C$ on the line $EF$, prove that points $B, O$ and $D$ are collinear.
2001 239 Open Mathematical Olympiad, 7
The quadrangle $ ABCD $ contains two circles of radii $ R_1 $ and $ R_2 $ tangent externally. The first circle touches the sides of $ DA $,$ AB $ and $ BC $, moreover, the sides of $ AB $ at the point $ E $. The second circle touches sides $ BC $, $ CD $ and $ DA $, and sides $ CD $ at $ F $. Diagonals of the quadrangle intersect at $ O $. Prove that $ OE + OF \leq 2 (R_1 + R_2) $.
(F. Bakharev, S. Berlov)
1982 IMO Longlists, 41
A convex, closed figure lies inside a given circle. The figure is seen from every point of the circumference at a right angle (that is, the two rays drawn from the point and supporting the convex figure are perpendicular). Prove that the center of the circle is a center of symmetry of the figure.
1992 IMO Longlists, 37
Let the circles $C_1, C_2$, and $C_3$ be orthogonal to the circle $C$ and intersect each other inside $C$ forming acute angles of measures $A, B$, and $C$. Show that $A + B +C < \pi.$
2013 Sharygin Geometry Olympiad, 8
Three cyclists ride along a circular road with radius $1$ km counterclockwise. Their velocities are constant and different. Does there necessarily exist (in a sufficiently long time) a moment when all the three distances between cyclists are greater than $1$ km?
by V. Protasov
2013 Junior Balkan Team Selection Tests - Romania, 3
Consider a circle centered at $O$ with radius $r$ and a line $\ell$ not passing through $O$. A grasshopper is jumping to and fro between the points of the circle and the line, the length of each jump being $r$. Prove that there are at most $8$ points for the grasshopper to reach.
2022 Israel TST, 3
In triangle $ABC$, the angle bisectors are $BE$ and $CF$ (where $E, F$ are on the sides of the triangle), and their intersection point is $I$. Point $N$ lies on the circumcircle of $AEF$, and the angle $\angle IAN$ is right. The circumcircle of $AEF$ meets the line $NI$ a second time at the point $L$. Show that the circumcenter of $AIL$ lies on line $BC$.
1992 IMO Longlists, 27
Let $ABC$ be an arbitrary scalene triangle. Define $\sum$ to be the set of all circles $y$ that have the following properties:
[b](i)[/b] $y$ meets each side of $ABC$ in two (possibly coincident) points;
[b](ii)[/b] if the points of intersection of $y$ with the sides of the triangle are labeled by $P, Q, R, S, T , U$, with the points occurring on the sides in orders $\mathcal B(B,P,Q,C), \mathcal B(C, R, S,A), \mathcal B(A, T,U,B)$, then the following relations of parallelism hold: $TS \parallel BC; PU\parallel CA; RQ\parallel AB$. (In the limiting cases, some of the conditions of parallelism will hold vacuously; e.g., if $A$ lies on the circle $y$, then $T$ , $S$ both coincide with $A$ and the relation $TS \parallel BC$ holds vacuously.)
[i](a)[/i] Under what circumstances is $\sum$ nonempty?
[i](b)[/i] Assuming that Σ is nonempty, show how to construct the locus of centers of the circles in the set $\sum$.
[i](c)[/i] Given that the set $\sum$has just one element, deduce the size of the largest angle of $ABC.$
[i](d)[/i] Show how to construct the circles in $\sum$ that have, respectively, the largest and the smallest radii.
2010 Balkan MO Shortlist, G8
Let $c(0, R)$ be a circle with diameter $AB$ and $C$ a point, on it different than $A$ and $B$ such that $\angle AOC > 90^o$. On the radius $OC$ we consider the point $K$ and the circle $(c_1)$ with center $K$ and radius $KC = R_1$. We draw the tangents $AD$ and $AE$ from $A$ to the circle $(c_1)$. Prove that the straight lines $AC, BK$ and $DE$ are concurrent
2005 Sharygin Geometry Olympiad, 15
Given a circle centered at the origin.
Prove that there is a circle of smaller radius that has no less points with integer coordinates.
2017 Oral Moscow Geometry Olympiad, 1
One square is inscribed in a circle, and another square is circumscribed around the same circle so that its vertices lie on the extensions of the sides of the first (see figure). Find the angle between the sides of these squares.
[img]https://3.bp.blogspot.com/-8eLBgJF9CoA/XTodHmW87BI/AAAAAAAAKY0/xsHTx71XneIZ8JTn0iDMHupCanx-7u4vgCK4BGAYYCw/s400/sharygin%2Boral%2B2017%2B10-11%2Bp1.png[/img]
2008 Postal Coaching, 5
Let $\omega$ be the semicircle on diameter $AB$. A line parallel to $AB$ intersects $\omega$ at $C$ and $D$ so that $B$ and $C$ lie on opposite sides of $AD$. The line through $C$ parallel to $AD$ meets $\omega$ again in $E$. Lines $BE$ and $CD$ meet in $F$ and the line through $F$ parallel to $AD$ meets $AB$ in $P$. Prove that $PC$ is tangent to $\omega$.
Estonia Open Senior - geometry, 2009.1.3
Three circles in a plane have the sides of a triangle as their diameters. Prove that there is a point that is in the interior of all three circles.
1959 AMC 12/AHSME, 31
A square, with an area of $40$, is inscribed in a semicircle. The area of a square that could be inscribed in the entire circle with the same radius, is:
$ \textbf{(A)}\ 80 \qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 120\qquad\textbf{(D)}\ 160\qquad\textbf{(E)}\ 200 $
1978 Germany Team Selection Test, 6
A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.
2017 Yasinsky Geometry Olympiad, 3
Given circle $\omega$ and point $D$ outside this circle. Find the following points $A, B$ and $C$ on the circle $\omega$ so that the $ABCD$ quadrilateral is convex and has the maximum possible area. Justify your answer.
2020 Adygea Teachers' Geometry Olympiad, 2
The square $ABCD$ is inscribed in a circle. Points $E$ and $F$ are located on the side of the square, and points $G$ and $H$ are located on the smaller arc $AB$ of the circle so that the $EFGH$ is a square. Find the area ratio of these squares.
2005 Switzerland - Final Round, 8
Let $ABC$ be an acute-angled triangle. $M ,N$ are any two points on the sides $AB , AC$ respectively. The circles with the diameters $BN$ and $CM$ intersect at points $P$ and $Q$. Show that the points $P, Q$ and the orthocenter of the triangle $ABC$ lie on a straight line.
2011 IFYM, Sozopol, 3
Let $g_1$ and $g_2$ be some lines, which intersect in point $A$. A circle $k_1$ is tangent to $g_1$ at point $A$ and intersects $g_2$ for a second time in $C$. A circle $k_2$ is tangent to $g_2$ at point $A$ and intersects $g_1$ for a second time in $D$. The circles $k_1$ and $k_2$ intersect for a second time in point $B$. Prove that, if $\frac{AC}{AD}=\sqrt{2}$, then $\frac{BC}{BD}=2$.
Geometry Mathley 2011-12, 5.4
Let $ABC$ be a triangle inscribed in a circle $(O)$. Let $P$ be an arbitrary point in the plane of triangle $ABC$. Points $A',B',C'$ are the reflections of $P$ about the lines $BC,CA,AB$ respectively. $X$ is the intersection, distinct from $A$, of the circle with diameter $AP$ and the circumcircle of triangle $AB'C'$. Points $Y,Z$ are defined in the same way. Prove that five circles $(O), (AB'C')$, $(BC'A'), (CA'B'), (XY Z)$ have a point in common.
Nguyễn Văn Linh