Found problems: 3882
2008 Vietnam Team Selection Test, 2
Let $ k$ be a positive real number. Triangle ABC is acute and not isosceles, O is its circumcenter and AD,BE,CF are the internal bisectors. On the rays AD,BE,CF, respectively, let points L,M,N such that $ \frac {AL}{AD} \equal{} \frac {BM}{BE} \equal{} \frac {CN}{CF} \equal{} k$. Denote $ (O_1),(O_2),(O_3)$ be respectively the circle through L and touches OA at A, the circle through M and touches OB at B, the circle through N and touches OC at C.
1) Prove that when $ k \equal{} \frac{1}{2}$, three circles $ (O_1),(O_2),(O_3)$ have exactly two common points, the centroid G of triangle ABC lies on that common chord of these circles.
2) Find all values of k such that three circles $ (O_1),(O_2),(O_3)$ have exactly two common points
2023 Israel TST, P3
Let $ABC$ be an acute-angled triangle with circumcenter $O$ and incenter $I$. The midpoint of arc $BC$ of the circumcircle of $ABC$ not containing $A$ is denoted $S$. Points $E, F$ were chosen on line $OI$ for which $BE$ and $CF$ are both perpendicular to $OI$. Point $X$ was chosen so that $XE\perp AC$ and $XF\perp AB$. Point $Y$ was chosen so that $YE\perp SC$ and $YF\perp SB$. $D$ was chosen on $BC$ so that $DI\perp BC$. Prove that $X$, $Y$, and $D$ are collinear.
1998 Iran MO (3rd Round), 5
In a triangle $ABC$, the bisector of angle $BAC$ intersects $BC$ at $D$. The circle $\Gamma$ through $A$ which is tangent to $BC$ at $D$ meets $AC$ again at $M$. Line $BM$ meets $\Gamma$ again at $P$. Prove that line $AP$ is a median of $\triangle ABD.$
2025 Kosovo EGMO Team Selection Test, P1
Let $ABC$ be an acute triangle. Let $D$ and $E$ be the feet of the altitudes of the triangle $ABC$ from $A$ and $B$, respectively. Let $F$ be the reflection of the point $A$ over $BC$. Let $G$ be a point such that the quadrilateral $ABCG$ is a parallelogram. Show that the circumcircles of triangles $BCF$ , $ACG$ and $CDE$ are concurrent on a point different from $C$.
2003 China Team Selection Test, 1
Triangle $ABC$ is inscribed in circle $O$. Tangent $PD$ is drawn from $A$, $D$ is on ray $BC$, $P$ is on ray $DA$. Line $PU$ ($U \in BD$) intersects circle $O$ at $Q$, $T$, and intersect $AB$ and $AC$ at $R$ and $S$ respectively. Prove that if $QR=ST$, then $PQ=UT$.
Kharkiv City MO Seniors - geometry, 2018.11.4
The line $\ell$ parallel to the side $BC$ of the triangle $ABC$, intersects its sides $AB,AC$ at the points $D,E$, respectively. The circumscribed circle of triangle $ABC$ intersects line $\ell$ at points $F$ and $G$, such that points $F,D,E,G$ lie on line $\ell$ in this order. The circumscribed circles of the triangles $FEB$ and $DGC$ intersect at points $P$ and $Q$. Prove that points $A, P$ and $Q$ are collinear.
2004 Kazakhstan National Olympiad, 8
Let $ ABCD$ be a convex quadrilateral. The perpendicular bisectors of its sides $ AB$ and $ CD$ meet at $ Y$. Denote by $ X$ a point inside the quadrilateral $ ABCD$ such that $ \measuredangle ADX \equal{} \measuredangle BCX < 90^{\circ}$ and $ \measuredangle DAX \equal{} \measuredangle CBX < 90^{\circ}$. Show that $ \measuredangle AYB \equal{} 2\cdot\measuredangle ADX$.
2021 European Mathematical Cup, 2
Let $ABC$ be an acute-angled triangle such that $|AB|<|AC|$. Let $X$ and $Y$ be points on the minor arc ${BC}$ of the circumcircle of $ABC$ such that $|BX|=|XY|=|YC|$. Suppose that there exists a point $N$ on the segment $\overline{AY}$ such that $|AB|=|AN|=|NC|$. Prove that the line $NC$ passes through the midpoint of the segment $\overline{AX}$. \\ \\ (Ivan Novak)
2002 India IMO Training Camp, 19
Let $ABC$ be an acute triangle. Let $DAC,EAB$, and $FBC$ be isosceles triangles exterior to $ABC$, with $DA=DC, EA=EB$, and $FB=FC$, such that
\[
\angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad
\angle CFB = 2 \angle ACB.
\]
Let $D'$ be the intersection of lines $DB$ and $EF$, let $E'$ be the intersection of $EC$ and $DF$, and let $F'$ be the intersection of $FA$ and $DE$. Find, with proof, the value of the sum
\[
\frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}.
\]
2005 Turkey Team Selection Test, 2
Let $ABC$ be a triangle such that $\angle A=90$ and $\angle B < \angle C$. The tangent at $A$ to its circumcircle $\Gamma$ meets the line $BC$ at $D$. Let $E$ be the reflection of $A$ across $BC$, $X$ the foot of the perpendicular from $A$ to $BE$, and $Y$ be the midpoint of $AX$. Let the line $BY$ meet $\Gamma$ again at $Z$. Prove that the line $BD$ is tangent to circumcircle of triangle $ADZ$ .
2023 Brazil EGMO Team Selection Test, 3
Let $\Delta ABC$ be a triangle and $L$ be the foot of the bisector of $\angle A$. Let $O_1$ and $O_2$ be the circumcenters of $\triangle ABL$ and $\triangle ACL$ respectively and let $B_1$ and $C_1$ be the projections of $C$ and $B$ through the bisectors of the angles $\angle B$ and $\angle C$ respectively. The incircle of $\Delta ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively and the bisectors of angles $\angle B$ and $\angle C$ meet the perpendicular bisector of $AL$ at points $Q$ and $P$ respectively. Prove that the five lines $PC_0, QB_0, O_1C_1, O_2B_1$ and $BC$ are all concurrent.
2021 Saint Petersburg Mathematical Olympiad, 6
A line $\ell$ passes through vertex $C$ of the rhombus $ABCD$ and meets the extensions of $AB, AD$ at points $X,Y$. Lines $DX, BY$ meet $(AXY)$ for the second time at $P,Q$. Prove that the circumcircle of $\triangle PCQ$ is tangent to $\ell$
[i]A. Kuznetsov[/i]
2025 Junior Macedonian Mathematical Olympiad, 5
Let $M$ be the midpoint of side $BC$ in $\triangle ABC$, and $P \neq B$ is such that the quadrilateral $ABMP$ is cyclic and the circumcircle of $\triangle BPC$ is tangent to the line $AB$. If $E$ is the second common point of the line $BP$ and the circumcircle of $\triangle ABC$, determine the ratio $BE: BP$.
2017 Israel National Olympiad, 5
A regular pentagon $ABCDE$ is given. The point $X$ is on his circumcircle, on the arc $\overarc{AE}$. Prove that $|AX|+|CX|+|EX|=|BX|+|DX|$.
[u][b]Remark:[/b][/u] Here's a more general version of the problem: Prove that for any point $X$ in the plane, $|AX|+|CX|+|EX|\ge|BX|+|DX|$, with equality only on the arc $\overarc{AE}$.
2004 China Team Selection Test, 1
Find the largest value of the real number $ \lambda$, such that as long as point $ P$ lies in the acute triangle $ ABC$ satisfying $ \angle{PAB}\equal{}\angle{PBC}\equal{}\angle{PCA}$, and rays $ AP$, $ BP$, $ CP$ intersect the circumcircle of triangles $ PBC$, $ PCA$, $ PAB$ at points $ A_1$, $ B_1$, $ C_1$ respectively, then $ S_{A_1BC}\plus{} S_{B_1CA}\plus{} S_{C_1AB} \geq \lambda S_{ABC}$.
2014 Vietnam National Olympiad, 4
Let $ABC$ be an acute triangle, $(O)$ be the circumcircle, and $AB<AC.$ Let $I$ be the midpoint of arc $BC$ (not containing $A$). $K$ lies on $AC,$ $K\ne C$ such that $IK=IC.$ $BK$ intersects $(O)$ at the second point $D,$ $D\ne B$ and intersects $AI$ at $E.$ $DI$ intersects $AC$ at $F.$
a) Prove that $EF=\frac{BC}{2}.$
b) $M$ lies on $DI$ such that $CM$ is parallel to $AD.$ $KM$ intersects $BC$ at $N.$ The circumcircle of triangle $BKN$ intersects $(O)$ at the second point $P.$ Prove that $PK$ passes through the midpoint of segment $AD.$
2024 Sharygin Geometry Olympiad, 10.8
The common tangents to the circumcircle and an excircle of triangle $ABC$ meet $BC, CA,AB$ at points $A_1, B_1, C_1$ and $A_2, B_2, C_2$ respectively. The triangle $\Delta_1$ is formed by the lines $AA_1, BB_1$, and $CC_1$, the triangle $\Delta_2$ is formed by the lines $AA_2, BB_2,$ and $CC_2$. Prove that the circumradii of these triangles are equal.
2004 China Team Selection Test, 1
Find the largest value of the real number $ \lambda$, such that as long as point $ P$ lies in the acute triangle $ ABC$ satisfying $ \angle{PAB}\equal{}\angle{PBC}\equal{}\angle{PCA}$, and rays $ AP$, $ BP$, $ CP$ intersect the circumcircle of triangles $ PBC$, $ PCA$, $ PAB$ at points $ A_1$, $ B_1$, $ C_1$ respectively, then $ S_{A_1BC}\plus{} S_{B_1CA}\plus{} S_{C_1AB} \geq \lambda S_{ABC}$.
2008 Bulgaria Team Selection Test, 2
In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.
2011 IberoAmerican, 1
Let $ABC$ be an acute-angled triangle, with $AC \neq BC$ and let $O$ be its circumcenter. Let $P$ and $Q$ be points such that $BOAP$ and $COPQ$ are parallelograms. Show that $Q$ is the orthocenter of $ABC$.
2009 Croatia Team Selection Test, 3
A triangle $ ABC$ is given with $ \left|AB\right| > \left|AC\right|$. Line $ l$ tangents in a point $ A$ the circumcirle of $ ABC$. A circle centered in $ A$ with radius $ \left|AC\right|$ cuts $ AB$ in the point $ D$ and the line $ l$ in points $ E, F$ (such that $ C$ and $ E$ are in the same halfplane with respect to $ AB$). Prove that the line $ DE$ passes through the incenter of $ ABC$.
2021 Oral Moscow Geometry Olympiad, 5
The trapezoid is inscribed in a circle. Prove that the sum of distances from any point of the circle to the midpoints of the lateral sides are not less than the diagonal of the trapezoid.
2011 China Team Selection Test, 1
Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.
2017-2018 SDPC, 6
Let $ABC$ be an acute triangle with circumcenter $O$. Let the parallel to $BC$ through $A$ intersect line $BO$ at $B_A$ and $CO$ at $C_A$. Lines $B_AC$ and $BC_A$ intersect at $A'$. Define $B'$ and $C'$ similarly.
(a) Prove that the the perpendicular from $A'$ to $BC$, the perpendicular from $B'$ to $AC$, and $C'$ to $AB$ are concurrent.
(b) Prove that likes $AA'$, $BB'$, and $CC'$ are concurrent.
2014 Greece Team Selection Test, 3
Let $ABC$ be an acute,non-isosceles triangle with $AB<AC<BC$.Let $D,E,Z$ be the midpoints of $BC,AC,AB$ respectively and segments $BK,CL$ are altitudes.In the extension of $DZ$ we take a point $M$ such that the parallel from $M$ to $KL$ crosses the extensions of $CA,BA,DE$ at $S,T,N$ respectively (we extend $CA$ to $A$-side and $BA$ to $A$-side and $DE$ to $E$-side).If the circumcirle $(c_{1})$ of $\triangle{MBD}$ crosses the line $DN$ at $R$ and the circumcirle $(c_{2})$ of $\triangle{NCD}$ crosses the line $DM$ at $P$ prove that $ST\parallel PR$.