This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2011 Gheorghe Vranceanu, 1

Let $ O $ be the circumcenter of $ ABC. $ The equalities $$ |OA+2OB|=|OB+2OC|=|OC+2OA| $$ hold. Prove that $ ABC $ is equilateral.

2003 Iran MO (3rd Round), 24

$ A,B$ are fixed points. Variable line $ l$ passes through the fixed point $ C$. There are two circles passing through $ A,B$ and tangent to $ l$ at $ M,N$. Prove that circumcircle of $ AMN$ passes through a fixed point.

Mathley 2014-15, 6

A quadrilateral is called bicentric if it has both an incircle and a circumcircle. $ABCD$ is a bicentric quadrilateral with $(O)$ being its circumcircle. Let $E, F$ be the intersections of $AB$ and $CD, AD$ and $BC$ respectively. Prove that there is a circle with center $O$ tangent to all of the circumcircles of the four triangles $EAD, EBC, FAB, FCD$. Nguyen Van Linh, a student of the Vietnamese College, Ha Noi

2014 USAJMO, 6

Let $ABC$ be a triangle with incenter $I$, incircle $\gamma$ and circumcircle $\Gamma$. Let $M,N,P$ be the midpoints of sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ and let $E,F$ be the tangency points of $\gamma$ with $\overline{CA}$ and $\overline{AB}$, respectively. Let $U,V$ be the intersections of line $EF$ with line $MN$ and line $MP$, respectively, and let $X$ be the midpoint of arc $BAC$ of $\Gamma$. (a) Prove that $I$ lies on ray $CV$. (b) Prove that line $XI$ bisects $\overline{UV}$.

2014 Sharygin Geometry Olympiad, 18

Let $I$ be the incenter of a circumscribed quadrilateral $ABCD$. The tangents to circle $AIC$ at points $A, C$ meet at point $X$. The tangents to circle $BID$ at points $B, D$ meet at point $Y$ . Prove that $X, I, Y$ are collinear.

2015 Korea Junior Math Olympiad, 1

In an acute, scalene triangle $\triangle ABC$, let $O$ be the circumcenter. Let $M$ be the midpoint of $AC$. Let the perpendicular from $A$ to $BC$ be $D$. Let the circumcircle of $\triangle OAM$ hit $DM$ at $P(\not= M)$. Prove that $B, O, P$ are colinear.

2009 India Regional Mathematical Olympiad, 5

A convex polygon is such that the distance between any two vertices does not exceed $ 1$. $ (i)$ Prove that the distance between any two points on the boundary of the polygon does not exceed $ 1$. $ (ii)$ If $ X$ and $ Y$ are two distinct points inside the polygon, prove that there exists a point $ Z$ on the boundary of the polygon such that $ XZ \plus{} YZ\le1$.

2012 Czech-Polish-Slovak Junior Match, 3

Different points $A, B, C, D$ lie on a circle with a center at the point $O$ at such way that $\angle AOB$ $= \angle BOC =$ $\angle COD =$ $60^o$. Point $P$ lies on the shorter arc $BC$ of this circle. Points $K, L, M$ are projections of $P$ on lines $AO, BO, CO$ respectively . Show that (a) the triangle $KLM$ is equilateral, (b) the area of triangle $KLM$ does not depend on the choice of the position of point $P$ on the shorter arc $BC$

2008 India National Olympiad, 5

Let $ ABC$ be a triangle; $ \Gamma_A,\Gamma_B,\Gamma_C$ be three equal, disjoint circles inside $ ABC$ such that $ \Gamma_A$ touches $ AB$ and $ AC$; $ \Gamma_B$ touches $ AB$ and $ BC$; and $ \Gamma_C$ touches $ BC$ and $ CA$. Let $ \Gamma$ be a circle touching circles $ \Gamma_A, \Gamma_B, \Gamma_C$ externally. Prove that the line joining the circum-centre $ O$ and the in-centre $ I$ of triangle $ ABC$ passes through the centre of $ \Gamma$.

2014 India Regional Mathematical Olympiad, 1

In an acute-angled triangle $ABC, \angle ABC$ is the largest angle. The perpendicular bisectors of $BC$ and $BA$ intersect AC at $X$ and $Y$ respectively. Prove that circumcentre of triangle $ABC$ is incentre of triangle $BXY$ .

2015 Saudi Arabia BMO TST, 3

Let $ABC$ be a triangle, $\Gamma$ its circumcircle, $I$ its incenter, and $\omega$ a tangent circle to the line $AI$ at $I$ and to the side $BC$. Prove that the circles $\Gamma$ and $\omega$ are tangent. Malik Talbi

2023 Germany Team Selection Test, 3

Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.

2004 Germany Team Selection Test, 3

Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$. [i]Proposed by Hojoo Lee, Korea[/i]

1969 IMO Longlists, 21

$(FRA 4)$ A right-angled triangle $OAB$ has its right angle at the point $B.$ An arbitrary circle with center on the line $OB$ is tangent to the line $OA.$ Let $AT$ be the tangent to the circle different from $OA$ ($T$ is the point of tangency). Prove that the median from $B$ of the triangle $OAB$ intersects $AT$ at a point $M$ such that $MB = MT.$

2009 Spain Mathematical Olympiad, 2

Let $ ABC$ be an acute triangle with the incircle $ C(I,r)$ and the circumcircle $ C(O,R)$ . Denote $ D\in BC$ for which $ AD\perp BC$ and $ AD \equal{} h_a$ . Prove that $ DI^2 \equal{} (2R \minus{} h_a)(h_a \minus{} 2r)$ .

2011 Middle European Mathematical Olympiad, 3

In a plane the circles $\mathcal K_1$ and $\mathcal K_2$ with centers $I_1$ and $I_2$, respectively, intersect in two points $A$ and $B$. Assume that $\angle I_1AI_2$ is obtuse. The tangent to $\mathcal K_1$ in $A$ intersects $\mathcal K_2$ again in $C$ and the tangent to $\mathcal K_2$ in $A$ intersects $\mathcal K_1$ again in $D$. Let $\mathcal K_3$ be the circumcircle of the triangle $BCD$. Let $E$ be the midpoint of that arc $CD$ of $\mathcal K_3$ that contains $B$. The lines $AC$ and $AD$ intersect $\mathcal K_3$ again in $K$ and $L$, respectively. Prove that the line $AE$ is perpendicular to $KL$.

2021 Indonesia MO, 2

Let $ABC$ be an acute triangle. Let $D$ and $E$ be the midpoint of segment $AB$ and $AC$ respectively. Suppose $L_1$ and $L_2$ are circumcircle of triangle $ABC$ and $ADE$ respectively. $CD$ intersects $L_1$ and $L_2$ at $M (M \not= C)$ and $N (N \not= D)$. If $DM = DN$, prove that $\triangle ABC$ is isosceles.

2002 Mediterranean Mathematics Olympiad, 3

In an acute-angled triangle $ABC$, $M$ and $N$ are points on the sides $AC$ and $BC$ respectively, and $K$ the midpoint of $MN$. The circumcircles of triangles $ACN$ and $BCM$ meet again at a point $D$. Prove that the line $CD$ contains the circumcenter $O$ of $\triangle ABC$ if and only if $K$ is on the perpendicular bisector of $AB.$

2015 Iran Geometry Olympiad, 2

In acute-angled triangle $ABC$, $BH$ is the altitude of the vertex $B$. The points $D$ and $E$ are midpoints of $AB$ and $AC$ respectively. Suppose that $F$ be the reflection of $H$ with respect to $ED$. Prove that the line $BF$ passes through circumcenter of $ABC$. by Davood Vakili

1995 Romania Team Selection Test, 1

Let AD be the altitude of a triangle ABC and E , F be the incenters of the triangle ABD and ACD , respectively. line EF meets AB and AC at K and L. prove tht AK=AL if and only if AB=AC or A=90

2019 China Team Selection Test, 1

$ABCDE$ is a cyclic pentagon, with circumcentre $O$. $AB=AE=CD$. $I$ midpoint of $BC$. $J$ midpoint of $DE$. $F$ is the orthocentre of $\triangle ABE$, and $G$ the centroid of $\triangle AIJ$.$CE$ intersects $BD$ at $H$, $OG$ intersects $FH$ at $M$. Show that $AM\perp CD$.

2011 IMO, 6

Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $\ell$ be a tangent line to $\Gamma$, and let $\ell_a, \ell_b$ and $\ell_c$ be the lines obtained by reflecting $\ell$ in the lines $BC$, $CA$ and $AB$, respectively. Show that the circumcircle of the triangle determined by the lines $\ell_a, \ell_b$ and $\ell_c$ is tangent to the circle $\Gamma$. [i]Proposed by Japan[/i]

2014 ELMO Shortlist, 8

In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$. [i]Proposed by Sammy Luo[/i]

1969 IMO Shortlist, 5

$(BEL 5)$ Let $G$ be the centroid of the triangle $OAB.$ $(a)$ Prove that all conics passing through the points $O,A,B,G$ are hyperbolas. $(b)$ Find the locus of the centers of these hyperbolas.

2010 China Team Selection Test, 2

Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.