This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2009 IberoAmerican, 4

Given a triangle $ ABC$ of incenter $ I$, let $ P$ be the intersection of the external bisector of angle $ A$ and the circumcircle of $ ABC$, and $ J$ the second intersection of $ PI$ and the circumcircle of $ ABC$. Show that the circumcircles of triangles $ JIB$ and $ JIC$ are respectively tangent to $ IC$ and $ IB$.

2000 Singapore MO Open, 1

Triangle $ABC$ is inscribed in a circle with center $O$. Let $D$ and $E$ be points on the respective sides $AB$ and $AC$ so that $DE$ is perpendicular to $AO$. Show that the four points $B,D,E$ and $C$ lie on a circle.

1985 IMO Longlists, 56

Let $ABCD$ be a rhombus with angle $\angle A = 60^\circ$. Let $E$ be a point, different from $D$, on the line $AD$. The lines $CE$ and $AB$ intersect at $F$. The lines $DF$ and $BE$ intersect at $M$. Determine the angle $\angle BMD$ as a function of the position of $E$ on $AD.$

2003 India IMO Training Camp, 1

Let $A',B',C'$ be the midpoints of the sides $BC, CA, AB$, respectively, of an acute non-isosceles triangle $ABC$, and let $D,E,F$ be the feet of the altitudes through the vertices $A,B,C$ on these sides respectively. Consider the arc $DA'$ of the nine point circle of triangle $ABC$ lying outside the triangle. Let the point of trisection of this arc closer to $A'$ be $A''$. Define analogously the points $B''$ (on arc $EB'$) and $C''$(on arc $FC'$). Show that triangle $A''B''C''$ is equilateral.

Kyiv City MO Seniors 2003+ geometry, 2009.10.4

In the triangle $ABC$ the angle bisectors $AL$ and $BT$ are drawn, which intersect at the point $I$, and their extensions intersect the circle circumscribed around the triangle $ABC$ at the points $E$ and $D$ respectively. The segment $DE$ intersects the sides $AC$ and $BC$ at the points $F$ and $K$, respectively. Prove that: a) quadrilateral $IKCF$ is rhombus; b) the side of this rhombus is $\sqrt {DF \cdot EK}$. (Rozhkova Maria)

2008 Tournament Of Towns, 4

Let $ABCD$ be a non-isosceles trapezoid. De fine a point $A1$ as intersection of circumcircle of triangle $BCD$ and line $AC$. (Choose $A_1$ distinct from $C$). Points $B_1, C_1, D_1$ are de fined in similar way. Prove that $A_1B_1C_1D_1$ is a trapezoid as well.

2019 Junior Balkan MO, 3

Triangle $ABC$ is such that $AB < AC$. The perpendicular bisector of side $BC$ intersects lines $AB$ and $AC$ at points $P$ and $Q$, respectively. Let $H$ be the orthocentre of triangle $ABC$, and let $M$ and $N$ be the midpoints of segments $BC$ and $PQ$, respectively. Prove that lines $HM$ and $AN$ meet on the circumcircle of $ABC$.

2021 Indonesia MO, 7

Given $\triangle ABC$ with circumcircle $\ell$. Point $M$ in $\triangle ABC$ such that $AM$ is the angle bisector of $\angle BAC$. Circle with center $M$ and radius $MB$ intersects $\ell$ and $BC$ at $D$ and $E$ respectively, $(B \not= D, B \not= E)$. Let $P$ be the midpoint of arc $BC$ in $\ell$ that didn't have $A$. Prove that $AP$ angle bisector of $\angle DPE$ if and only if $\angle B = 90^{\circ}$.

2021 Canadian Mathematical Olympiad Qualification, 4

Let $O$ be the centre of the circumcircle of triangle $ABC$ and let $I$ be the centre of the incircle of triangle $ABC$. A line passing through the point $I$ is perpendicular to the line $IO$ and passes through the incircle at points $P$ and $Q$. Prove that the diameter of the circumcircle is equal to the perimeter of triangle $OPQ$.

Russian TST 2022, P2

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

2021 Vietnam National Olympiad, 7

Let $ ABC $ be an inscribed triangle in circle $ (O) $. Let $ D $ be the intersection of the two tangent lines of $ (O) $ at $ B $ and $ C $. The circle passing through $ A $ and tangent to $ BC $ at $ B $ intersects the median passing $ A $ of the triangle $ ABC $ at $ G $. Lines $ BG, CG $ intersect $ CD, BD $ at $ E, F $ respectively. a) The line passing through the midpoint of $ BE $ and $ CF $ cuts $ BF, CE $ at $ M, N $ respectively. Prove that the points $ A, D, M, N $ belong to the same circle. b) Let $ AD, AG $ intersect the circumcircle of the triangles $ DBC, GBC $ at $ H, K $ respectively. The perpendicular bisectors of $ HK, HE$, and $HF $ cut $ BC, CA$, and $AB $ at $ R, P$, and $Q $ respectively. Prove that the points $ R, P$, and $Q $ are collinear.

2023 Korea Summer Program Practice Test, P6

$AB < AC$ on $\triangle ABC$. The midpoint of arc $BC$ which doesn't include $A$ is $T$ and which includes $A$ is $S$. On segment $AB,AC$, $D,E$ exist so that $DE$ and $BC$ are parallel. The outer angle bisector of $\angle ABE$ and $\angle ACD$ meets $AS$ at $P$ and $Q$. Prove that the circumcircle of $\triangle PBE$ and $\triangle QCD$ meets on $AT$.

2008 AMC 12/AHSME, 25

Let $ ABCD$ be a trapezoid with $ AB\parallel{}CD$, $ AB\equal{}11$, $ BC\equal{}5$, $ CD\equal{}19$, and $ DA\equal{}7$. Bisectors of $ \angle A$ and $ \angle D$ meet at $ P$, and bisectors of $ \angle B$ and $ \angle C$ meet at $ Q$. What is the area of hexagon $ ABQCDP$? $ \textbf{(A)}\ 28\sqrt{3}\qquad \textbf{(B)}\ 30\sqrt{3}\qquad \textbf{(C)}\ 32\sqrt{3}\qquad \textbf{(D)}\ 35\sqrt{3}\qquad \textbf{(E)}\ 36\sqrt{3}$

2014 PUMaC Individual Finals A, 1

Let $\gamma$ be the incircle of $\triangle ABC$ (i.e. the circle inscribed in $\triangle ABC$) for which $AB+AC=3BC$. Let the point where $AC$ is tangent to $\gamma$ be $D$. Let the incenter of $I$. Let the intersection of the circumcircle of $\triangle BCI$ with $\gamma$ that is closer to $B$ be $P$. Show that $PID$ is collinear.

1995 Brazil National Olympiad, 4

A regular tetrahedron has side $L$. What is the smallest $x$ such that the tetrahedron can be passed through a loop of twine of length $x$?

2018 Dutch IMO TST, 2

Suppose a triangle $\vartriangle ABC$ with $\angle C = 90^o$ is given. Let $D$ be the midpoint of $AC$, and let $E$ be the foot of the altitude through $C$ on $BD$. Show that the tangent in $C$ of the circumcircle of $\vartriangle AEC$ is perpendicular to $AB$.

2010 China Team Selection Test, 2

Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.

2006 Germany Team Selection Test, 2

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2013 ELMO Shortlist, 3

In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$. [i]Proposed by Allen Liu[/i]

2015 India Regional MathematicaI Olympiad, 5

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I.$ Let the internal angle bisectors of $\angle A,\angle B,\angle C$ meet $\Gamma$ in $A',B',C'$ respectively. Let $B'C'$ intersect $AA'$ at $P,$ and $AC$ in $Q.$ Let $BB'$ intersect $AC$ in $R.$ Suppose the quadrilateral $PIRQ$ is a kite; that is, $IP=IR$ and $QP=QR.$ Prove that $ABC$ is an equilateral triangle.

2019 PUMaC Geometry B, 1

Suppose we have a convex quadrilateral $ABCD$ such that $\angle B = 100^\circ$ and the circumcircle of $\triangle ABC$ has a center at $D$. Find the measure, in degrees, of $\angle D$. [i]Note:[/i] The circumcircle of a $\triangle ABC$ is the unique circle containing $A$, $B$, and $C$.

2017 Pan African, Problem 6

Let $ABC$ be a triangle with $H$ its orthocenter. The circle with diameter $[AC]$ cuts the circumcircle of triangle $ABH$ at $K$. Prove that the point of intersection of the lines $CK$ and $BH$ is the midpoint of the segment $[BH]$

1995 USAMO, 3

Given a nonisosceles, nonright triangle ABC, let O denote the center of its circumscribed circle, and let $A_1$, $B_1$, and $C_1$ be the midpoints of sides BC, CA, and AB, respectively. Point $A_2$ is located on the ray $OA_1$ so that $OAA_1$ is similar to $OA_2A$. Points $B_2$ and $C_2$ on rays $OB_1$ and $OC_1$, respectively, are defined similarly. Prove that lines $AA_2$, $BB_2$, and $CC_2$ are concurrent, i.e. these three lines intersect at a point.

2011 Northern Summer Camp Of Mathematics, 3

Given an acute triangle $ABC$ such that $\angle C< \angle B< \angle A$. Let $I$ be the incenter of $ABC$. Let $M$ be the midpoint of the smaller arc $BC$, $N$ be the midpoint of the segment $BC$ and let $E$ be a point such that $NE=NI$. The line $ME$ intersects circumcircle of $ABC$ at $Q$ (different from $A, B$, and $C$). Prove that [b](i)[/b] The point $Q$ is on the smaller arc $AC$ of circumcircle of $ABC$. [b](ii)[/b] $BQ=AQ+CQ$

1989 IMO Shortlist, 6

For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality \[ 16Q^3 \geq 27 r^4 P,\] where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and $ABC$ respectively.