This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2014 Contests, 3

Let $ABC$ be an acute,non-isosceles triangle with $AB<AC<BC$.Let $D,E,Z$ be the midpoints of $BC,AC,AB$ respectively and segments $BK,CL$ are altitudes.In the extension of $DZ$ we take a point $M$ such that the parallel from $M$ to $KL$ crosses the extensions of $CA,BA,DE$ at $S,T,N$ respectively (we extend $CA$ to $A$-side and $BA$ to $A$-side and $DE$ to $E$-side).If the circumcirle $(c_{1})$ of $\triangle{MBD}$ crosses the line $DN$ at $R$ and the circumcirle $(c_{2})$ of $\triangle{NCD}$ crosses the line $DM$ at $P$ prove that $ST\parallel PR$.

2011 South East Mathematical Olympiad, 4

Let $O$ be the circumcenter of triangle $ABC$ , a line passes through $O$ intersects sides $AB,AC$ at points $M,N$ , $E$ is the midpoint of $MC$ , $F$ is the midpoint of $NB$ , prove that : $\angle FOE= \angle BAC$

2004 Iran MO (3rd Round), 29

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

1993 Vietnam Team Selection Test, 1

Let $H$, $I$, $O$ be the orthocenter, incenter and circumcenter of a triangle. Show that $2 \cdot IO \geq IH$. When does the equality hold ?

2024 Oral Moscow Geometry Olympiad, 3

The hypotenuse $AB$ of a right-angled triangle $ABC$ touches the corresponding excircle $\omega$ at point $T$. Point $S$ is symmetrical $T$ relative to the bisector of angle $C$, $CH$ is the height of the triangle. Prove that the circumcircle of triangle $CSH$ touches the circle $\omega$.

2009 Moldova Team Selection Test, 3

[color=darkred]A circle $ \Omega_1$ is tangent outwardly to the circle $ \Omega_2$ of bigger radius. Line $ t_1$ is tangent at points $ A$ and $ D$ to the circles $ \Omega_1$ and $ \Omega_2$ respectively. Line $ t_2$, parallel to $ t_1$, is tangent to the circle $ \Omega_1$ and cuts $ \Omega_2$ at points $ E$ and $ F$. Point $ C$ belongs to the circle $ \Omega_2$ such that $ D$ and $ C$ are separated by the line $ EF$. Denote $ B$ the intersection of $ EF$ and $ CD$. Prove that circumcircle of $ ABC$ is tangent to the line $ AD$.[/color]

2013 Korea - Final Round, 1

For a triangle $ \triangle ABC (\angle B > \angle C) $, $ D $ is a point on $ AC $ satisfying $ \angle ABD = \angle C $. Let $ I $ be the incenter of $ \triangle ABC $, and circumcircle of $ \triangle CDI $ meets $ AI $ at $ E ( \ne I )$. The line passing $ E $ and parallel to $ AB $ meets the line $ BD $ at $ P $. Let $ J $ be the incenter of $ \triangle ABD $, and $ A' $ be the point such that $ AI = IA' $. Let $ Q $ be the intersection point of $ JP $ and $ A'C $. Prove that $ QJ = QA' $.

2010 ELMO Shortlist, 5

Determine all (not necessarily finite) sets $S$ of points in the plane such that given any four distinct points in $S$, there is a circle passing through all four or a line passing through some three. [i]Carl Lian.[/i]

2019 Greece JBMO TST, 1

Consider an acute triangle $ABC$ with $AB>AC$ inscribed in a circle of center $O$. From the midpoint $D$ of side $BC$ we draw line $(\ell)$ perpendicular to side $AB$ that intersects it at point $E$. If line $AO$ intersects line $(\ell)$ at point $Z$, prove that points $A,Z,D,C$ are concyclic.

2011 Switzerland - Final Round, 5

Let $\triangle{ABC}$ be a triangle with circumcircle $\tau$. The tangentlines to $\tau$ through $A$ and $B$ intersect at $T$. The circle through $A$, $B$ and $T$ intersects $BC$ and $AC$ again at $D$ and $E$, respectively; $CT$ and $BE$ intersect at $F$. Suppose $D$ is the midpoint of $BC$. Calculate the ratio $BF:BE$. [i](Swiss Mathematical Olympiad 2011, Final round, problem 5)[/i]

2008 Nordic, 3

Let $ABC$ be a triangle and $D,E$ be points on $BC,CA$ such that $AD,BE$ are angle bisectors of $\triangle ABC$. Let $F,G$ be points on the circumcircle of $\triangle ABC$ such that $AF||DE$ and $FG||BC$. Prove that $\frac{AG}{BG}= \frac{AB+AC}{AB+BC}$.

2019 Sharygin Geometry Olympiad, 2

Let $A_1$, $B_1$, $C_1$ be the midpoints of sides $BC$, $AC$ and $AB$ of triangle $ABC$, $AK$ be the altitude from $A$, and $L$ be the tangency point of the incircle $\gamma$ with $BC$. Let the circumcircles of triangles $LKB_1$ and $A_1LC_1$ meet $B_1C_1$ for the second time at points $X$ and $Y$ respectively, and $\gamma$ meet this line at points $Z$ and $T$. Prove that $XZ = YT$.

1981 Vietnam National Olympiad, 3

Two circles $k_1$ and $k_2$ with centers $O_1$ and $O_2$ respectively touch externally at $A$. Let $M$ be a point inside $k_2$ and outside the line $O_1O_2$. Find a line $d$ through $M$ which intersects $k_1$ and $k_2$ again at $B$ and $C$ respectively so that the circumcircle of $\Delta ABC$ is tangent to $O_1O_2$.

2014 NIMO Problems, 5

Triangle $ABC$ has sidelengths $AB = 14, BC = 15,$ and $CA = 13$. We draw a circle with diameter $AB$ such that it passes $BC$ again at $D$ and passes $CA$ again at $E$. If the circumradius of $\triangle CDE$ can be expressed as $\tfrac{m}{n}$ where $m, n$ are coprime positive integers, determine $100m+n$. [i]Proposed by Lewis Chen[/i]

2010 Lithuania National Olympiad, 2

Let $I$ be the incenter of a triangle $ABC$. $D,E,F$ are the symmetric points of $I$ with respect to $BC,AC,AB$ respectively. Knowing that $D,E,F,B$ are concyclic,find all possible values of $\angle B$.

Indonesia MO Shortlist - geometry, g2.6

Let $ABC$ be a triangle. Suppose $D$ is on $BC$ such that $AD$ bisects $\angle BAC$. Suppose $M$ is on $AB$ such that $\angle MDA = \angle ABC$, and $N$ is on $AC$ such that $\angle NDA = \angle ACB$. If $AD$ and $MN$ intersect on $P$, prove that $AD^3 = AB \cdot AC \cdot AP$.

2014 Saudi Arabia Pre-TST, 2.4

Let $ABC$ be an acute triangle with $\angle A < \angle B \le \angle C$, and $O$ its circumcenter. The perpendicular bisector of side $AB$ intersects side $AC$ at $D$. The perpendicular bisector of side $AC$ intersects side $AB$ at $E$. Express the angles of triangle $DEO$ in terms of the angles of triangle $ABC$.

2011 Sharygin Geometry Olympiad, 22

Let $CX, CY$ be the tangents from vertex $C$ of triangle $ABC$ to the circle passing through the midpoints of its sides. Prove that lines $XY , AB$ and the tangent to the circumcircle of $ABC$ at point $C$ concur.

2010 Belarus Team Selection Test, 8.3

Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$. [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2014 AIME Problems, 5

Let the set $S = \{P_1, P_2, \cdots, P_{12}\}$ consist of the twelve vertices of a regular $12$-gon. A subset $Q$ of $S$ is called communal if there is a circle such that all points of $Q$ are inside the circle, and all points of $S$ not in $Q$ are outside of the circle. How many communal subsets are there? (Note that the empty set is a communal subset.)

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

Ukraine Correspondence MO - geometry, 2007.11

Denote by $B_1$ and $C_1$, the midpoints of the sides $AB$ and $AC$ of the triangle $ABC$. Let the circles circumscribed around the triangles $ABC_1$ and $AB_1C$ intersect at points $A$ and $P$, and let the line $AP$ intersect the circle circumscribed around the triangle $ABC$ at points $A$ and $Q$. Find the ratio $\frac{AQ}{AP}$.

1995 India Regional Mathematical Olympiad, 6

Let $A_1A_2A_3 \ldots A_{21}$ be a 21-sided regular polygon inscribed in a circle with centre $O$. How many triangles $A_iA_jA_k$, $1 \leq i < j < k \leq 21$, contain the centre point $O$ in their interior?

2013 Sharygin Geometry Olympiad, 2

Two circles with centers $O_1$ and $O_2$ meet at points $A$ and $B$. The bisector of angle $O_1AO_2$ meets the circles for the second time at points $C $and $D$. Prove that the distances from the circumcenter of triangle $CBD$ to $O_1$ and to $O_2$ are equal.

Mathley 2014-15, 3

A point $P$ is interior to the triangle $ABC$ such that $AP \perp BC$. Let $E, F$ be the projections of $CA, AB$. Suppose that the tangents at $E, F$ of the circumcircle of triangle $AEF$ meets at a point on $BC$. Prove that $P$ is the orthocenter of triangle $ABC$. Do Thanh Son, High School of Natural Sciences, National University, Hanoi