This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2006 Iran MO (3rd Round), 5

$M$ is midpoint of side $BC$ of triangle $ABC$, and $I$ is incenter of triangle $ABC$, and $T$ is midpoint of arc $BC$, that does not contain $A$. Prove that \[\cos B+\cos C=1\Longleftrightarrow MI=MT\]

Geometry Mathley 2011-12, 5.2

Let $ABCD$ be a rectangle and $U, V$ two points of its circumcircle. Lines $AU,CV$ intersect at $P$ and lines $BU,DV$ intersect at $Q$, distinct from $P$. Prove that $$\frac{1}{PQ^2} \ge \frac{1}{UV^2} - \frac{1}{AC^2}$$ Michel Bataille

2012 India Regional Mathematical Olympiad, 5

Let $AL$ and $BK$ be the angle bisectors in a non-isosceles triangle $ABC,$ where $L$ lies on $BC$ and $K$ lies on $AC.$ The perpendicular bisector of $BK$ intersects the line $AL$ at $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK.$ Prove that $LN=NA.$

2017 Ukrainian Geometry Olympiad, 4

Let $AD$ be the inner angle bisector of the triangle $ABC$. The perpendicular on the side $BC$ at the point $D$ intersects the outer bisector of $\angle CAB$ at point $I$. The circle with center $I$ and radius $ID$ intersects the sides $AB$ and $AC$ at points $F$ and $E$ respectively. $A$-symmedian of $\Delta AFE$ intersects the circumcircle of $\Delta AFE$ again at point $X$. Prove that the circumcircles of $\Delta AFE$ and $\Delta BXC$ are tangent.

2006 MOP Homework, 4

Let $ABC$ be a triangle with circumcenter $O$. Let $A_1$ be the midpoint of side $BC$. Ray $AA_1$ meet the circumcircle of triangle $ABC$ again at $A_2$ (other than A). Let $Q_a$ be the foot of the perpendicular from $A_1$ to line $AO$. Point $P_a$ lies on line $Q_aA_1$ such that $P_aA_2 \perp A_2O$. Define points $P_b$ and $P_c$ analogously. Prove that points $P_a$, P_b$, and $P_c$ lie on a line.

2000 IMO Shortlist, 6

Let $ ABCD$ be a convex quadrilateral. The perpendicular bisectors of its sides $ AB$ and $ CD$ meet at $ Y$. Denote by $ X$ a point inside the quadrilateral $ ABCD$ such that $ \measuredangle ADX \equal{} \measuredangle BCX < 90^{\circ}$ and $ \measuredangle DAX \equal{} \measuredangle CBX < 90^{\circ}$. Show that $ \measuredangle AYB \equal{} 2\cdot\measuredangle ADX$.

2003 Croatia National Olympiad, Problem 2

Let $M$ be a point inside square $ABCD$ and $A_1,B_1,C_1,D_1$ be the second intersection points of $AM$, $BM$, $CM$, $DM$ with the circumcircle of the square. Prove that $A_1B_1\cdot C_1D_1=A_1D_1\cdot B_1C_1$.

2013 Turkey Team Selection Test, 1

Let $E$ be intersection of the diagonals of convex quadrilateral $ABCD$. It is given that $m(\widehat{EDC}) = m(\widehat{DEC})=m(\widehat{BAD})$. If $F$ is a point on $[BC]$ such that $m(\widehat{BAF}) + m(\widehat{EBF})=m(\widehat{BFE})$, show that $A$, $B$, $F$, $D$ are concyclic.

2012 Ukraine Team Selection Test, 2

$E$ is the intersection point of the diagonals of the cyclic quadrilateral, $ABCD, F$ is the intersection point of the lines $AB$ and $CD, M$ is the midpoint of the side $AB$, and $N$ is the midpoint of the side $CD$. The circles circumscribed around the triangles $ABE$ and $ACN$ intersect for the second time at point $K$. Prove that the points $F, K, M$ and $N$ lie on one circle.

2003 All-Russian Olympiad, 4

Let $B$ and $C$ be arbitrary points on sides $AP$ and $PD$ respectively of an acute triangle $APD$. The diagonals of the quadrilateral $ABCD$ meet at $Q$, and $H_1,H_2$ are the orthocenters of triangles $APD$ and $BPC$, respectively. Prove that if the line $H_1H_2$ passes through the intersection point $X \ (X \neq Q)$ of the circumcircles of triangles $ABQ$ and $CDQ$, then it also passes through the intersection point $Y \ (Y \neq Q)$ of the circumcircles of triangles $BCQ$ and $ADQ.$

2017 China Team Selection Test, 2

Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.

1984 IMO Longlists, 3

The opposite sides of the reentrant hexagon $AFBDCE$ intersect at the points $K,L,M$ (as shown in the figure). It is given that $AL = AM = a, BM = BK = b$, $CK = CL = c, LD = DM = d, ME = EK = e, FK = FL = f$. [img]http://imgur.com/LUFUh.png[/img] $(a)$ Given length $a$ and the three angles $\alpha, \beta$ and $\gamma$ at the vertices $A, B,$ and $C,$ respectively, satisfying the condition $\alpha+\beta+\gamma<180^{\circ}$, show that all the angles and sides of the hexagon are thereby uniquely determined. $(b)$ Prove that \[\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{d}\] Easier version of $(b)$. Prove that \[(a + f)(b + d)(c + e)= (a + e)(b + f)(c + d)\]

2019 All-Russian Olympiad, 6

Let $L$ be the foot of the internal bisector of $\angle B$ in an acute-angled triangle $ABC.$ The points $D$ and $E$ are the midpoints of the smaller arcs $AB$ and $BC$ respectively in the circumcircle $\omega$ of $\triangle ABC.$ Points $P$ and $Q$ are marked on the extensions of the segments $BD$ and $BE$ beyond $D$ and $E$ respectively so that $\measuredangle APB=\measuredangle CQB=90^{\circ}.$ Prove that the midpoint of $BL$ lies on the line $PQ.$

1993 Brazil National Olympiad, 4

$ABCD$ is a convex quadrilateral with \[\angle BAC = 30^\circ \]\[\angle CAD = 20^\circ\]\[\angle ABD = 50^\circ\]\[\angle DBC = 30^\circ\] If the diagonals intersect at $P$, show that $PC = PD$.

2009 India IMO Training Camp, 4

Let $ \gamma$ be circumcircle of $ \triangle ABC$.Let $ R_a$ be radius of circle touching $ AB,AC$&$ \gamma$ internally.Define $ R_b,R_c$ similarly. Prove That $ \frac {1}{aR_a} \plus{} \frac {1}{bR_b} \plus{} \frac {1}{cR_c} \equal{} \frac {s^2}{rabc}$.

2015 Latvia Baltic Way TST, 5

$BE$ is the altitude of acute triangle $ABC$. The line $\ell$ touches the circumscribed circle of the triangle $ABC$ at point $B$. A perpendicular $CF$ is drawn from $C$ on line $\ell$. Prove that the lines $EF$ and $AB$ are parallel.

2008 China Team Selection Test, 1

Let $ P$ be the the isogonal conjugate of $ Q$ with respect to triangle $ ABC$, and $ P,Q$ are in the interior of triangle $ ABC$. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ PBC,PCA,PAB$, $ O'_{1},O'_{2},O'_{3}$ the circumcenters of triangle $ QBC,QCA,QAB$, $ O$ the circumcenter of triangle $ O_{1}O_{2}O_{3}$, $ O'$ the circumcenter of triangle $ O'_{1}O'_{2}O'_{3}$. Prove that $ OO'$ is parallel to $ PQ$.

2008 All-Russian Olympiad, 3

In a scalene triangle $ ABC, H$ and $ M$ are the orthocenter an centroid respectively. Consider the triangle formed by the lines through $ A,B$ and $ C$ perpendicular to $ AM,BM$ and $ CM$ respectively. Prove that the centroid of this triangle lies on the line $ MH$.

2020 Peru EGMO TST, 3

Let $ABC$ be a triangle with $AB<AC$ and $I$ be your incenter. Let $M$ and $N$ be the midpoints of the sides $BC$ and $AC$, respectively. If the lines $AI$ and $IN$ are perpendicular, prove that the line $AI$ is tangent to the circumcircle of $\triangle IMC$.

2014 Taiwan TST Round 3, 3

Let $M$ be any point on the circumcircle of triangle $ABC$. Suppose the tangents from $M$ to the incircle meet $BC$ at two points $X_1$ and $X_2$. Prove that the circumcircle of triangle $MX_1X_2$ intersects the circumcircle of $ABC$ again at the tangency point of the $A$-mixtilinear incircle.

2019 Saudi Arabia BMO TST, 3

The triangle $ABC$ ($AB > BC$) is inscribed in the circle $\Omega$. On the sides $AB$ and $BC$, the points $M$ and $N$ are chosen, respectively, so that $AM = CN$, The lines $MN$ and $AC$ intersect at point $K$. Let $P$ be the center of the inscribed circle of triangle $AMK$, and $Q$ the center of the excircle of the triangle $CNK$ tangent to side $CN$. Prove that the midpoint of the arc $ABC$ of the circle $\Omega$ is equidistant from the $P$ and $Q$.

2014 Contests, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

2013 AIME Problems, 5

In equilateral $\triangle ABC$ let points $D$ and $E$ trisect $\overline{BC}$. Then $\sin \left( \angle DAE \right)$ can be expressed in the form $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is an integer that is not divisible by the square of any prime. Find $a+b+c$.

2003 China Team Selection Test, 1

In triangle $ABC$, $AB > BC > CA$, $AB=6$, $\angle{B}-\angle{C}=90^o$. The incircle touches $BC$ at $E$ and $EF$ is a diameter of the incircle. Radical $AF$ intersect $BC$ at $D$. $DE$ equals to the circumradius of $\triangle{ABC}$. Find $BC$ and $AC$.

2023 Iran Team Selection Test, 2

$ABCD$ is cyclic quadrilateral and $O$ is the center of its circumcircle. Suppose that $AD \cap BC = E$ and $AC \cap BD = F$. Circle $\omega$ is tanget to line $AC$ and $BD$. $PQ$ is a diameter of $\omega$ that $F$ is orthocenter of $EPQ$. Prove that line $OE$ is passing through center of $\omega$ [i]Proposed by Mahdi Etesami Fard [/i]