This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2016 Bosnia And Herzegovina - Regional Olympiad, 3

$h_a$, $h_b$ and $h_c$ are altitudes, $t_a$, $t_b$ and $t_c$ are medians of acute triangle, $r$ radius of incircle, and $R$ radius of circumcircle of acute triangle $ABC$. Prove that $$\frac{t_a}{h_a}+\frac{t_b}{h_b}+\frac{t_c}{h_c} \leq 1+ \frac{R}{r}$$

2014 India IMO Training Camp, 3

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2022 Moldova EGMO TST, 2

In the acute triangle $ABC$ point $M$ is the midpoint of $AC$ and $N$ is the foot of the height of $A$ on $BC$. Point $D$ is on the circumcircle of triangle $BMN$ such that $AD$ and $BM$ are parallel and $AC$ is between the points $B$ and $D$. Prove that $BD=BC$.

1986 Balkan MO, 1

A line passing through the incenter $I$ of the triangle $ABC$ intersect its incircle at $D$ and $E$ and its circumcircle at $F$ and $G$, in such a way that the point $D$ lies between $I$ and $F$. Prove that: $DF \cdot EG \geq r^{2}$.

2015 EGMO, 6

Let $H$ be the orthocentre and $G$ be the centroid of acute-angled triangle $ABC$ with $AB\ne AC$. The line $AG$ intersects the circumcircle of $ABC$ at $A$ and $P$. Let $P'$ be the reflection of $P$ in the line $BC$. Prove that $\angle CAB = 60$ if and only if $HG = GP'$

2012 Greece JBMO TST, 3

Let $ABC$ be an acute triangle with $AB<AC<BC$, inscribed in circle $c(O,R)$ (with center $O$ and radius $R$). Let $O_1$ be the symmetric point of $O$ wrt $AC$. Circle $c_1(O_1,R)$ intersects $BC$ at $Z$. If the extension of the altitude $AD$ intersects the cicrumscribed circle $c(O,R)$ at point $E$, prove that $EC$ is perpendicular on $AZ$.

2014 Silk Road, 2

Let $w$ be the circumcircle of non-isosceles acute triangle $ABC$. Tangent lines to $w$ in $A$ and $B$ intersect at point $S$. Let M be the midpoint of $AB$, and $H$ be the orthocenter of triangle $ABC$. The line $HA$ intersects lines $CM$ and $CS$ at points $M_a$ and $S_a$, respectively. The points $M_b$ and $S_b$ are defined analogously. Prove that $M_aS_b$ and $M_bS_a$ are the altitudes of triangle $M_aM_bH$.

2012 China National Olympiad, 1

In the triangle $ABC$, $\angle A$ is biggest. On the circumcircle of $\triangle ABC$, let $D$ be the midpoint of $\widehat{ABC}$ and $E$ be the midpoint of $\widehat{ACB}$. The circle $c_1$ passes through $A,B$ and is tangent to $AC$ at $A$, the circle $c_2$ passes through $A,E$ and is tangent $AD$ at $A$. $c_1$ and $c_2$ intersect at $A$ and $P$. Prove that $AP$ bisects $\angle BAC$. [hide="Diagram"][asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(14.4cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -5.23, xmax = 9.18, ymin = -2.97, ymax = 4.82; /* image dimensions */ /* draw figures */ draw(circle((-1.32,1.36), 2.98)); draw(circle((3.56,1.53), 3.18)); draw((0.92,3.31)--(-2.72,-1.27)); draw(circle((0.08,0.25), 3.18)); draw((-2.72,-1.27)--(3.13,-0.65)); draw((3.13,-0.65)--(0.92,3.31)); draw((0.92,3.31)--(2.71,-1.54)); draw((-2.41,-1.74)--(0.92,3.31)); draw((0.92,3.31)--(1.05,-0.43)); /* dots and labels */ dot((-1.32,1.36),dotstyle); dot((0.92,3.31),dotstyle); label("$A$", (0.81,3.72), NE * labelscalefactor); label("$c_1$", (-2.81,3.53), NE * labelscalefactor); dot((3.56,1.53),dotstyle); label("$c_2$", (3.43,3.98), NE * labelscalefactor); dot((1.05,-0.43),dotstyle); label("$P$", (0.5,-0.43), NE * labelscalefactor); dot((-2.72,-1.27),dotstyle); label("$B$", (-3.02,-1.57), NE * labelscalefactor); dot((2.71,-1.54),dotstyle); label("$E$", (2.71,-1.86), NE * labelscalefactor); dot((3.13,-0.65),dotstyle); label("$C$", (3.39,-0.9), NE * labelscalefactor); dot((-2.41,-1.74),dotstyle); label("$D$", (-2.78,-2.07), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/hide]

2010 JBMO Shortlist, 2

Let $ABC$ be acute-angled triangle . A circle $\omega_1(O_1,R_1)$ passes through points $B$ and $C$ and meets the sides $AB$ and $AC$ at points $D$ and $E$ ,respectively . Let $\omega_2(O_2,R_2)$ be the circumcircle of triangle $ADE$ . Prove that $O_1O_2$ is equal to the circumradius of triangle $ABC$ .

2020 Yasinsky Geometry Olympiad, 3

The segments $BF$ and $CN$ are the altitudes in the acute-angled triangle $ABC$. The line $OI$, which connects the centers of the circumscribed and inscribed circles of triangle $ABC$, is parallel to the line $FN$. Find the length of the altitude $AK$ in the triangle $ABC$ if the radii of its circumscribed and inscribed circles are $R$ and $r$, respectively. (Grigory Filippovsky)

2003 AIME Problems, 12

In convex quadrilateral $ABCD$, $\angle A \cong \angle C$, $AB = CD = 180$, and $AD \neq BC$. The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor$. (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x$.)

Croatia MO (HMO) - geometry, 2017.7

The point $M$ is located inside the triangle $ABC$. The ray $AM$ intersects the circumcircle of the triangle $MBC$ once more at point $D$, the ray $BM$ intersects the circumcircle of the triangle $MCA$ once more at point $E$, and the ray $CM$ intersects the circumcircle of the triangle $MAB$ once more at point $F$. Prove that holds $$\frac{AD}{MD}+\frac{BE}{ME} +\frac{CF}{MF}\ge \frac92 $$

1988 IMO Longlists, 69

Let $ Q$ be the centre of the inscribed circle of a triangle $ ABC.$ Prove that for any point $ P,$ \[ a(PA)^2 \plus{} b(PB)^2 \plus{} c(PC)^2 \equal{} a(QA)^2 \plus{} b(QB)^2 \plus{} c(QC)^2 \plus{} (a \plus{} b \plus{} c)(QP)^2, \] where $ a \equal{} BC, b \equal{} CA$ and $ c \equal{} AB.$

1996 Iran MO (3rd Round), 5

Let $O$ be the circumcenter and $H$ the orthocenter of an acute-angled triangle $ABC$ such that $BC>CA$. Let $F$ be the foot of the altitude $CH$ of triangle $ABC$. The perpendicular to the line $OF$ at the point $F$ intersects the line $AC$ at $P$. Prove that $\measuredangle FHP=\measuredangle BAC$.

1990 Brazil National Olympiad, 3

Each face of a tetrahedron is a triangle with sides $a, b,$c and the tetrahedon has circumradius 1. Find $a^2 + b^2 + c^2$.

2022 Novosibirsk Oral Olympiad in Geometry, 4

A point $D$ is marked on the side $AC$ of triangle $ABC$. The circumscribed circle of triangle $ABD$ passes through the center of the inscribed circle of triangle $BCD$. Find $\angle ACB$ if $\angle ABC = 40^o$.

2016 International Zhautykov Olympiad, 1

A quadrilateral $ABCD$ is inscribed in a circle with center $O$. It's diagonals meet at $M$.The circumcircle of $ABM$ intersects the sides $AD$ and $BC$ at $N$ and $K$ respectively. Prove that areas of $NOMD$ and $KOMC$ are equal.

2000 Brazil Team Selection Test, Problem 1

Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$. [color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]

2010 Contests, 1

Determine all (not necessarily finite) sets $S$ of points in the plane such that given any four distinct points in $S$, there is a circle passing through all four or a line passing through some three. [i]Carl Lian.[/i]

2004 Czech-Polish-Slovak Match, 5

Points $K,L,M$ on the sides $AB,BC,CA$ respectively of a triangle $ABC$ satisfy $\frac{AK}{KB} = \frac{BL}{LC} = \frac{CM}{MA}$. Show that the triangles $ABC$ and $KLM$ have a common orthocenter if and only if $\triangle ABC$ is equilateral.

2024 Sharygin Geometry Olympiad, 15

The difference of two angles of a triangle is greater than $90^{\circ}$. Prove that the ratio of its circumradius and inradius is greater than $4$.

2013 Online Math Open Problems, 16

Let $S_1$ and $S_2$ be two circles intersecting at points $A$ and $B$. Let $C$ and $D$ be points on $S_1$ and $S_2$ respectively such that line $CD$ is tangent to both circles and $A$ is closer to line $CD$ than $B$. If $\angle BCA = 52^\circ$ and $\angle BDA = 32^\circ$, determine the degree measure of $\angle CBD$. [i]Ray Li[/i]

2014 Postal Coaching, 4

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.