This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2011 Brazil National Olympiad, 5

Let $ABC$ be an acute triangle and $H$ is orthocenter. Let $D$ be the intersection of $BH$ and $AC$ and $E$ be the intersection of $CH$ and $AB$. The circumcircle of $ADE$ cuts the circumcircle of $ABC$ at $F \neq A$. Prove that the angle bisectors of $\angle BFC$ and $\angle BHC$ concur at a point on $BC.$

2006 Iran Team Selection Test, 5

Let $ABC$ be an acute angle triangle. Suppose that $D,E,F$ are the feet of perpendicluar lines from $A,B,C$ to $BC,CA,AB$. Let $P,Q,R$ be the feet of perpendicular lines from $A,B,C$ to $EF,FD,DE$. Prove that \[ 2(PQ+QR+RP)\geq DE+EF+FD \]

2000 China Team Selection Test, 1

Let $ABC$ be a triangle such that $AB = AC$. Let $D,E$ be points on $AB,AC$ respectively such that $DE = AC$. Let $DE$ meet the circumcircle of triangle $ABC$ at point $T$. Let $P$ be a point on $AT$. Prove that $PD + PE = AT$ if and only if $P$ lies on the circumcircle of triangle $ADE$.

2017 Moldova Team Selection Test, 7

Let $ABC$ be an acute triangle, and $H$ its orthocenter. The distance from $H$ to rays $BC$, $CA$, and $AB$ is denoted by $d_a$, $d_b$, and $d_c$, respectively. Let $R$ be the radius of circumcenter of $\triangle ABC$ and $r$ be the radius of incenter of $\triangle ABC$. Prove the following inequality: $$d_a+d_b+d_c \le \frac{3R^2}{4r}$$.

2010 Turkey Junior National Olympiad, 1

A circle that passes through the vertex $A$ of a rectangle $ABCD$ intersects the side $AB$ at a second point $E$ different from $B.$ A line passing through $B$ is tangent to this circle at a point $T,$ and the circle with center $B$ and passing through $T$ intersects the side $BC$ at the point $F.$ Show that if $\angle CDF= \angle BFE,$ then $\angle EDF=\angle CDF.$

2022 Mexican Girls' Contest, 7

Let $ABCD$ be a parallelogram (non-rectangle) and $\Gamma$ is the circumcircle of $\triangle ABD$. The points $E$ and $F$ are the intersections of the lines $BC$ and $DC$ with $\Gamma$ respectively. Define $P=ED\cap BA$, $Q=FB\cap DA$ and $R=PQ\cap CA$. Prove that $$\frac{PR}{RQ}=(\frac{BC}{CD})^2$$

2022 Durer Math Competition (First Round), 2

In the acute triangle $ABC$ the circle through $B$ touching the line $AC$ at $A$ has centre $P$, the circle through $A$ touching the line $BC$ at $B$ has centre $Q$. Let $R$ and $O$ be the circumradius and circumcentre of triangle $ABC$, respectively. Show that $R^2 = OP \cdot OQ$.

2023 European Mathematical Cup, 2

Let $ABC$ be a triangle such that $\angle BAC = 90^{\circ}$. The incircle of triangle $ABC$ is tangent to the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D,E,F$ respectively. Let $M$ be the midpoint of $\overline{EF}$. Let $P$ be the projection of $A$ onto $BC$ and let $K$ be the intersection of $MP$ and $AD$. Prove that the circumcircles of triangles $AFE$ and $PDK$ have equal radius. [i]Kyprianos-Iason Prodromidis[/i]

2007 Sharygin Geometry Olympiad, 17

What triangles can be cut into three triangles having equal radii of circumcircles?

2010 All-Russian Olympiad Regional Round, 9.6

Let points $A$, $B$, $C$ lie on a circle, and line $b$ be the tangent to the circle at point $B$. Perpendiculars $PA_1$ and $PC_1$ are dropped from a point $P$ on line $b$ onto lines $AB$ and $BC$ respectively. Points $A_1$ and $C_1$ lie inside line segments $AB$ and $BC$ respectively. Prove that $A_1C_1$ is perpendicular to $AC$.

1994 Brazil National Olympiad, 6

A triangle has semi-perimeter $s$, circumradius $R$ and inradius $r$. Show that it is right-angled iff $2R = s - r$.

2012 Morocco TST, 4

Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear. [i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]

2009 Postal Coaching, 4

Let $ABC$ be a triangle, and let $DEF$ be another triangle inscribed in the incircle of $ABC$. If $s$ and $s_1$ denote the semiperimeters of $ABC$ and $DEF$ respectively, prove that $2s_1 \le s$. When does equality hold?

1993 India National Olympiad, 1

The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ intersect at $P$. Let $O$ be the circumcenter of triangle $APB$ and $H$ be the orthocenter of triangle $CPD$. Show that the points $H,P,O$ are collinear.

2014 Taiwan TST Round 2, 1

Let $\omega$ be the circumcircle of a triangle $ABC$. Denote by $M$ and $N$ the midpoints of the sides $AB$ and $AC$, respectively, and denote by $T$ the midpoint of the arc $BC$ of $\omega$ not containing $A$. The circumcircles of the triangles $AMT$ and $ANT$ intersect the perpendicular bisectors of $AC$ and $AB$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $ABC$. The lines $MN$ and $XY$ intersect at $K$. Prove that $KA=KT$.

1969 IMO Longlists, 44

$(MON 5)$ Find the radius of the circle circumscribed about the isosceles triangle whose sides are the solutions of the equation $x^2 - ax + b = 0$.

2015 Korea - Final Round, 2

In a triangle $\triangle ABC$ with incenter $I$, the incircle meets lines $BC, CA, AB$ at $D, E, F$ respectively. Define the circumcenter of $\triangle IAB$ and $\triangle IAC$ $O_1$ and $O_2$ respectively. Let the two intersections of the circumcircle of $\triangle ABC$ and line $EF$ be $P, Q$. Prove that the circumcenter of $\triangle DPQ$ lies on the line $O_1O_2$.

2016 CentroAmerican, 2

Let $ABC$ be an acute-angled triangle, $\Gamma$ its circumcircle and $M$ the midpoint of $BC$. Let $N$ be a point in the arc $BC$ of $\Gamma$ not containing $A$ such that $\angle NAC= \angle BAM$. Let $R$ be the midpoint of $AM$, $S$ the midpoint of $AN$ and $T$ the foot of the altitude through $A$. Prove that $R$, $S$ and $T$ are collinear.

2017 JBMO Shortlist, G2

Let $ABC$ be an acute triangle such that $AB$ is the shortest side of the triangle. Let $D$ be the midpoint of the side $AB$ and $P$ be an interior point of the triangle such that $\angle CAP = \angle CBP = \angle ACB$. Denote by M and $N$ the feet of the perpendiculars from $P$ to $BC$ and $AC$, respectively. Let $p$ be the line through $ M$ parallel to $AC$ and $q$ be the line through $N$ parallel to $BC$. If $p$ and $q$ intersect at $K$ prove that $D$ is the circumcenter of triangle $MNK$.

2024 Lusophon Mathematical Olympiad, 3

Let $ABC$ be a triangle with incentre $I$. A line $r$ that passes through $I$ intersects the circumcircles of triangles $AIB$ and $AIC$ at points $P$ and $Q$, respectively. Prove that the circumcentre of triangle $APQ$ is on the circumcircle of $ABC$.

2016 Sharygin Geometry Olympiad, P6

Let $M$ be the midpoint of side $AC$ of triangle $ABC$, $MD$ and $ME$ be the perpendiculars from $M$ to $AB$ and $BC$ respectively. Prove that the distance between the circumcenters of triangles $ABE$ and $BCD$ is equal to $AC/4$ [i](Proposed by M.Volchkevich)[/i]

1990 IMO Longlists, 90

Let $P$ be a variable point on the circumference of a quarter-circle with radii $OA, OB$ and $\angle AOB = 90^\circ$. H is the projection of $P$ on $OA$. Find the locus of the incenter of the right-angled triangle $HPO.$

2002 China Western Mathematical Olympiad, 2

Let $ O$ be the circumcenter of acute triangle $ ABC$. Point $ P$ is in the interior of triangle $ AOB$. Let $ D,E,F$ be the projections of $ P$ on the sides $ BC,CA,AB$, respectively. Prove that the parallelogram consisting of $ FE$ and $ FD$ as its adjacent sides lies inside triangle $ ABC$.

2009 Ukraine Team Selection Test, 1

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

Durer Math Competition CD 1st Round - geometry, 2011.D5

Is it true that in every convex polygon $3$ adjacent vertices can be selected such that their circumcirscribed circle can cover the entire polygon?