This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2006 Estonia National Olympiad, 4

In a triangle ABC with circumcentre O and centroid M, lines OM and AM are perpendicular. Let AM intersect the circumcircle of ABC again at A′. Let lines BA′ and AC intersect at D and let lines CA′ and AB intersect at E. Prove that the circumcentre of triangle ADE lies on the circumcircle of ABC.

MathLinks Contest 7th, 2.3

Let $ ABC$ be a given triangle with the incenter $ I$, and denote by $ X$, $ Y$, $ Z$ the intersections of the lines $ AI$, $ BI$, $ CI$ with the sides $ BC$, $ CA$, and $ AB$, respectively. Consider $ \mathcal{K}_{a}$ the circle tangent simultanously to the sidelines $ AB$, $ AC$, and internally to the circumcircle $ \mathcal{C}(O)$ of $ ABC$, and let $ A^{\prime}$ be the tangency point of $ \mathcal{K}_{a}$ with $ \mathcal{C}$. Similarly, define $ B^{\prime}$, and $ C^{\prime}$. Prove that the circumcircles of triangles $ AXA^{\prime}$, $ BYB^{\prime}$, and $ CZC^{\prime}$ all pass through two distinct points.

2005 IMAR Test, 1

The incircle of triangle $ABC$ touches the sides $BC,CA,AB$ at the points $D,E,F$, respectively. Let $K$ be a point on the side $BC$ and let $M$ be the point on the line segment $AK$ such that $AM=AE=AF$. Denote by $L,N$ the incenters of triangles $ABK,ACK$, respectively. Prove that $K$ is the foot of the altitude from $A$ if and only if $DLMN$ is a square. [hide="Remark"]This problem is slightly connected to [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=344774#p344774]GMB-IMAR 2005, Juniors, Problem 2[/url] [/hide] [i]Bogdan Enescu[/i]

2013 ELMO Shortlist, 11

Let $\triangle ABC$ be a nondegenerate isosceles triangle with $AB=AC$, and let $D, E, F$ be the midpoints of $BC, CA, AB$ respectively. $BE$ intersects the circumcircle of $\triangle ABC$ again at $G$, and $H$ is the midpoint of minor arc $BC$. $CF\cap DG=I, BI\cap AC=J$. Prove that $\angle BJH=\angle ADG$ if and only if $\angle BID=\angle GBC$. [i]Proposed by David Stoner[/i]

2010 Korea Junior Math Olympiad, 3

In an acute triangle $\triangle ABC$, let there be point $D$ on segment $AC, E$ on segment $AB$ such that $\angle ADE = \angle ABC$. Let the bisector of $\angle A$ hit $BC$ at $K$. Let the foot of the perpendicular from $K$ to $DE$ be $P$, and the foot of the perpendicular from $A$ to $DE$ be $L$. Let $Q$ be the midpoint of $AL$. If the incenter of $\triangle ABC$ lies on the circumcircle of $\triangle ADE$, prove that $P,Q$ and the incenter of $\triangle ADE$ are collinear.

2022 India National Olympiad, 1

Let $D$ be an interior point on the side $BC$ of an acute-angled triangle $ABC$. Let the circumcircle of triangle $ADB$ intersect $AC$ again at $E(\ne A)$ and the circumcircle of triangle $ADC$ intersect $AB$ again at $F(\ne A)$. Let $AD$, $BE$, and $CF$ intersect the circumcircle of triangle $ABC$ again at $D_1(\ne A)$, $E_1(\ne B)$ and $F_1(\ne C)$, respectively. Let $I$ and $I_1$ be the incentres of triangles $DEF$ and $D_1E_1F_1$, respectively. Prove that $E,F, I, I_1$ are concyclic.

2012 Kazakhstan National Olympiad, 2

Given the rays $ OP$ and $OQ$.Inside the smaller angle $POQ$ selected points $M$ and $N$, such that $\angle POM=\angle QON $ and $\angle POM<\angle PON $ The circle, which concern the rays $OP$ and $ON$, intersects the second circle, which concern the rays $OM$ and $OQ$ at the points $B$ and $C$. Prove that$\angle POC=\angle QOB $

2006 Iran MO (3rd Round), 5

Find the biggest real number $ k$ such that for each right-angled triangle with sides $ a$, $ b$, $ c$, we have \[ a^{3}\plus{}b^{3}\plus{}c^{3}\geq k\left(a\plus{}b\plus{}c\right)^{3}.\]

2009 China Team Selection Test, 1

Given that points $ D,E$ lie on the sidelines $ AB,BC$ of triangle $ ABC$, respectively, point $ P$ is in interior of triangle $ ABC$ such that $ PE \equal{} PC$ and $ \bigtriangleup DEP\sim \bigtriangleup PCA.$ Prove that $ BP$ is tangent of the circumcircle of triangle $ PAD.$

Kyiv City MO Seniors 2003+ geometry, 2017.11.5.1

The bisector $AD$ is drawn in the triangle $ABC$. Circle $k$ passes through the vertex $A$ and touches the side $BC$ at point $D$. Prove that the circle circumscribed around $ABC$ touches the circle $k$ at point $A$.

2024 All-Russian Olympiad, 6

The altitudes of an acute triangle $ABC$ with $AB<AC$ intersect at a point $H$, and $O$ is the center of the circumcircle $\Omega$. The segment $OH$ intersects the circumcircle of $BHC$ at a point $X$, different from $O$ and $H$. The circumcircle of $AOX$ intersects the smaller arc $AB$ of $\Omega$ at point $Y$. Prove that the line $XY$ bisects the segment $BC$. [i]Proposed by A. Tereshin[/i]

2021 Nigerian Senior MO Round 2, 5

let $ABCD$ be a cyclic quadrilateral with $E$,an interior point such that $AB=AD=AE=BC$. Let $DE$ meet the circumcircle of $BEC$ again at $F$. Suppose a common tangent to the circumcircle of $BEC$ and $DEC$ touch the circles at $F$ and $G$ respectively. Show that $GE$ is the external angle bisector of angle $BEF$

2005 National Olympiad First Round, 5

Let $M$ be the intersection of diagonals of the convex quadrilateral $ABCD$, where $m(\widehat{AMB})=60^\circ$. Let the points $O_1$, $O_2$, $O_3$, $O_4$ be the circumcenters of the triangles $ABM$, $BCM$, $CDM$, $DAM$, respectively. What is $Area(ABCD)/Area(O_1O_2O_3O_4)$? $ \textbf{(A)}\ \dfrac 12 \qquad\textbf{(B)}\ \dfrac 32 \qquad\textbf{(C)}\ \dfrac {\sqrt 3}2 \qquad\textbf{(D)}\ \dfrac {1+2\sqrt 3}2 \qquad\textbf{(E)}\ \dfrac {1+\sqrt 3}2 $

1980 IMO, 20

The radii of the circumscribed circle and the inscribed circle of a regular $n$-gon, $n\ge 3$ are denoted by $R_n$ and $r_n$, respectively. Prove that \[\frac{r_n}{R_n}\ge\left(\frac{r_{n+1}}{R_{n+1}}\right)^2.\]

2012 Argentina National Olympiad, 3

In the triangle $ABC$ the incircle is tangent to the sides $AB$ and $AC$ at $D$ and $E$ respectively. The line $DE$ intersects the circumcircle at $P$ and $Q$, with $P$ in the small arc $AB$ and $Q$ in the small arc $AC$. If $P$ is the midpoint of the arc $AB$, find the angle A and the ratio $\frac{PQ}{BC}$.

2008 AIME Problems, 14

Let $ a$ and $ b$ be positive real numbers with $ a\ge b$. Let $ \rho$ be the maximum possible value of $ \frac{a}{b}$ for which the system of equations \[ a^2\plus{}y^2\equal{}b^2\plus{}x^2\equal{}(a\minus{}x)^2\plus{}(b\minus{}y)^2\]has a solution in $ (x,y)$ satisfying $ 0\le x<a$ and $ 0\le y<b$. Then $ \rho^2$ can be expressed as a fraction $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.

2017 Thailand TSTST, 3

In $\vartriangle ABC$ with $AB > AC$, the tangent to the circumcircle at $A$ intersects line $BC$ at $P$. Let $Q$ be the point on $AB$ such that $AQ = AC$, and $A$ lies between $B$ and $Q$. Let $R$ be the point on ray $AP$ such that $AR = CP$. Let $X, Y$ be the midpoints of $AP, CQ$ respectively. Prove that $CR = 2XY$ .

2012 France Team Selection Test, 3

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

1997 Bulgaria National Olympiad, 2

Let $M$ be the centroid of $\Delta ABC$ Prove the inequality $\sin \angle CAM + \sin\angle CBM \le \frac{2}{\sqrt 3}$  (a) if the circumscribed circle of $\Delta AMC$ is tangent to the line $AB$ (b) for any $\Delta ABC$

2009 Brazil National Olympiad, 2

Let $ ABC$ be a triangle and $ O$ its circumcenter. Lines $ AB$ and $ AC$ meet the circumcircle of $ OBC$ again in $ B_1\neq B$ and $ C_1 \neq C$, respectively, lines $ BA$ and $ BC$ meet the circumcircle of $ OAC$ again in $ A_2\neq A$ and $ C_2\neq C$, respectively, and lines $ CA$ and $ CB$ meet the circumcircle of $ OAB$ in $ A_3\neq A$ and $ B_3\neq B$, respectively. Prove that lines $ A_2A_3$, $ B_1B_3$ and $ C_1C_2$ have a common point.

2013 Iran MO (2nd Round), 3

Let $M$ be the midpoint of (the smaller) arc $BC$ in circumcircle of triangle $ABC$. Suppose that the altitude drawn from $A$ intersects the circle at $N$. Draw two lines through circumcenter $O$ of $ABC$ paralell to $MB$ and $MC$, which intersect $AB$ and $AC$ at $K$ and $L$, respectively. Prove that $NK=NL$.

2010 ELMO Shortlist, 1

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent. [i]Carl Lian.[/i]

1995 IMO Shortlist, 4

An acute triangle $ ABC$ is given. Points $ A_1$ and $ A_2$ are taken on the side $ BC$ (with $ A_2$ between $ A_1$ and $ C$), $ B_1$ and $ B_2$ on the side $ AC$ (with $ B_2$ between $ B_1$ and $ A$), and $ C_1$ and $ C_2$ on the side $ AB$ (with $ C_2$ between $ C_1$ and $ B$) so that \[ \angle AA_1A_2 \equal{} \angle AA_2A_1 \equal{} \angle BB_1B_2 \equal{} \angle BB_2B_1 \equal{} \angle CC_1C_2 \equal{} \angle CC_2C_1.\] The lines $ AA_1,BB_1,$ and $ CC_1$ bound a triangle, and the lines $ AA_2,BB_2,$ and $ CC_2$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.

2021 Oral Moscow Geometry Olympiad, 1

Quadrilateral $ABCD$ is inscribed in a circle, $E$ is an arbitrary point of this circle. It is known that distances from point $E$ to lines $AB, AC, BD$ and $CD$ are equal to $a, b, c$ and $d$ respectively. Prove that $ad= bc$.

2006 MOP Homework, 5

Let $ABC$ be an acute triangle with $AC \neq BC$. Points $H$ and $I$ are the orthocenter and incenter of the triangle, respectively. Line $CH$ and $CI$ meet the circumcircle of triangle $ABC$ again at $D$ and $L$ (other than $C$), respectively. Prove that $\angle CIH=90^{\circ}$ if and only if $\angle IDL=90^{\circ}$.