This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2016 Regional Olympiad of Mexico Southeast, 2

Let $ABCD$ a trapezium with $AB$ parallel to $CD, \Omega$ the circumcircle of $ABCD$ and $A_1,B_1$ points on segments $AC$ and $BC$ respectively, such that $DA_1B_1C$ is a cyclic cuadrilateral. Let $A_2$ and $B_2$ the symmetric points of $A_1$ and $B_1$ with respect of the midpoint of $AC$ and $BC$, respectively. Prove that points $A, B, A_2, B_2$ are concyclic.

Brazil L2 Finals (OBM) - geometry, 2010.5

The diagonals of an cyclic quadrilateral $ABCD$ intersect at $O$. The circumcircles of triangle $AOB$ and $COD$ intersect lines $BC$ and $AD$, for the second time, at points $M, N, P$and $Q$. Prove that the $MNPQ$ quadrilateral is inscribed in a circle of center $O$.

2025 6th Memorial "Aleksandar Blazhevski-Cane", P4

Let $ABCDE$ be a pentagon such that $\angle DCB < 90^{\circ} < \angle EDC$. The circle with diameter $BD$ intersects the line $BC$ again at $F$, and the circle with diameter $DE$ intersects the line $CE$ again at $G$. Prove that the second intersection ($\neq D$) of the circumcircle of $\triangle DFG$ and the circle with diameter $AD$ lies on $AC$. Proposed by [i]Petar Filipovski[/i]

2014 India Regional Mathematical Olympiad, 1

Let $ABC$ be a triangle with $\angle ABC $ as the largest angle. Let $R$ be its circumcenter. Let the circumcircle of triangle $ARB$ cut $AC$ again at $X$. Prove that $RX$ is perpendicular to $BC$.

2021 Saudi Arabia Training Tests, 23

Let $ABC$ be triangle with the symmedian point $L$ and circumradius $R$. Construct parallelograms $ ADLE$, $BHLK$, $CILJ$ such that $D,H \in AB$, $K, I \in BC$, $J,E \in CA$ Suppose that $DE$, $HK$, $IJ$ pairwise intersect at $X, Y,Z$. Prove that inradius of $XYZ$ is $\frac{R}{2}$ .

2011 Olympic Revenge, 4

Let $ABCD$ to be a quadrilateral inscribed in a circle $\Gamma$. Let $r$ and $s$ to be the tangents to $\Gamma$ through $B$ and $C$, respectively, $M$ the intersection between the lines $r$ and $AD$ and $N$ the intersection between the lines $s$ and $AD$. After all, let $E$ to be the intersection between the lines $BN$ and $CM$, $F$ the intersection between the lines $AE$ and $BC$ and $L$ the midpoint of $BC$. Prove that the circuncircle of the triangle $DLF$ is tangent to $\Gamma$.

2007 Balkan MO, 1

Let $ABCD$ a convex quadrilateral with $AB=BC=CD$, with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE=DE$ if and only if $\angle BAD+\angle ADC = 120$.

2019 Belarusian National Olympiad, 10.6

The tangents to the circumcircle of the acute triangle $ABC$, passing through $B$ and $C$, meet at point $F$. The points $M$, $L$, and $N$ are the feet of perpendiculars from the vertex $A$ to the lines $FB$, $FC$, and $BC$, respectively. Prove the inequality $AM+AL\ge 2AN$. [i](V. Karamzin)[/i]

2020 Vietnam Team Selection Test, 2

In acute $\triangle ABC$, $O$ is the circumcenter, $I$ is the incenter. The incircle touches $BC,CA,AB$ at $D,E,F$. And the points $K,M,N$ are the midpoints of $BC,CA,AB$ respectively. a) Prove that the lines passing through $D,E,F$ in parallel with $IK,IM,IN$ respectively are concurrent. b) Points $T,P,Q$ are the middle points of the major arc $BC,CA,AB$ on $\odot ABC$. Prove that the lines passing through $D,E,F$ in parallel with $IT,IP,IQ$ respectively are concurrent.

1962 IMO, 6

Consider an isosceles triangle. let $R$ be the radius of its circumscribed circle and $r$ be the radius of its inscribed circle. Prove that the distance $d$ between the centers of these two circle is \[ d=\sqrt{R(R-2r)} \]

2019 PUMaC Geometry B, 3

Let $\triangle ABC$ be a triangle with circumcenter $O$ and orthocenter $H$. Let $D$ be a point on the circumcircle of $ABC$ such that $AD \perp BC$. Suppose that $AB = 6, DB = 2$, and the ratio $\tfrac{\text{area}(\triangle ABC)}{\text{area}(\triangle HBC)}=5.$ Then, if $OA$ is the length of the circumradius, then $OA^2$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.

2018 China Team Selection Test, 3

In isosceles $\triangle ABC$, $AB=AC$, points $D,E,F$ lie on segments $BC,AC,AB$ such that $DE\parallel AB$, $DF\parallel AC$. The circumcircle of $\triangle ABC$ $\omega_1$ and the circumcircle of $\triangle AEF$ $\omega_2$ intersect at $A,G$. Let $DE$ meet $\omega_2$ at $K\neq E$. Points $L,M$ lie on $\omega_1,\omega_2$ respectively such that $LG\perp KG, MG\perp CG$. Let $P,Q$ be the circumcenters of $\triangle DGL$ and $\triangle DGM$ respectively. Prove that $A,G,P,Q$ are concyclic.

2003 Moldova Team Selection Test, 2

Consider the triangle $ ABC$ with side-lenghts equal to $ a,b,c$. Let $ p\equal{}\frac{a\plus{}b\plus{}c}{2}$, $ R$-the radius of circumcircle of the triangle $ ABC$, $ r$-the radius of the incircle of the triangle $ ABC$ and let $ l_a,l_b,l_c$ be the lenghts of bisectors drawn from $ A,B$ and $ C$, respectively, in the triangle $ ABC$. Prove that: $ l_al_b\plus{}l_bl_c\plus{}l_cl_a\leq p\sqrt{3r^2\plus{}12Rr}$ [i]Proposer[/i]: [b]Baltag Valeriu[/b]

1997 Balkan MO, 3

The circles $\mathcal C_1$ and $\mathcal C_2$ touch each other externally at $D$, and touch a circle $\omega$ internally at $B$ and $C$, respectively. Let $A$ be an intersection point of $\omega$ and the common tangent to $\mathcal C_1$ and $\mathcal C_2$ at $D$. Lines $AB$ and $AC$ meet $\mathcal C_1$ and $\mathcal C_2$ again at $K$ and $L$, respectively, and the line $BC$ meets $\mathcal C_1$ again at $M$ and $\mathcal C_2$ again at $N$. Prove that the lines $AD$, $KM$, $LN$ are concurrent. [i]Greece[/i]

2012 Iran MO (3rd Round), 2

Let the Nagel point of triangle $ABC$ be $N$. We draw lines from $B$ and $C$ to $N$ so that these lines intersect sides $AC$ and $AB$ in $D$ and $E$ respectively. $M$ and $T$ are midpoints of segments $BE$ and $CD$ respectively. $P$ is the second intersection point of circumcircles of triangles $BEN$ and $CDN$. $l_1$ and $l_2$ are perpendicular lines to $PM$ and $PT$ in points $M$ and $T$ respectively. Prove that lines $l_1$ and $l_2$ intersect on the circumcircle of triangle $ABC$. [i]Proposed by Nima Hamidi[/i]

1987 IMO Shortlist, 5

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

2024 CAPS Match, 3

Let $ABC$ be a triangle and $D$ a point on its side $BC.$ Points $E, F$ lie on the lines $AB, AC$ beyond vertices $B, C,$ respectively, such that $BE = BD$ and $CF = CD.$ Let $P$ be a point such that $D$ is the incenter of triangle $P EF.$ Prove that $P$ lies inside the circumcircle $\Omega$ of triangle $ABC$ or on it.

2010 Indonesia TST, 4

Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\] (a) prove that $ ABC$ is a right-angled triangle, and (b) calculate $ \dfrac{BP}{CH}$. [i]Soewono, Bandung[/i]

2023 Iran Team Selection Test, 6

$ABC$ is an acute triangle with orthocenter $H$. Point $P$ is in triangle $BHC$ that $\angle HPC = 3 \angle HBC $ and $\angle HPB =3 \angle HCB $. Reflection of point $P$ through $BH,CH$ is $X,Y$. if $S$ is the center of circumcircle of $AXY$ , Prove that: $$\angle BAS = \angle CAP$$ [i]Proposed by Pouria Mahmoudkhan Shirazi [/i]

2017 Sharygin Geometry Olympiad, P10

Points $K$ and $L$ on the sides $AB$ and $BC$ of parallelogram $ABCD$ are such that $\angle AKD = \angle CLD$. Prove that the circumcenter of triangle $BKL$ is equidistant from $A$ and $C$. [i]Proposed by I.I.Bogdanov[/i]

1996 Balkan MO, 1

Let $O$ be the circumcenter and $G$ be the centroid of a triangle $ABC$. If $R$ and $r$ are the circumcenter and incenter of the triangle, respectively, prove that \[ OG \leq \sqrt{ R ( R - 2r ) } . \] [i]Greece[/i]

2010 Tuymaada Olympiad, 2

In acute triangle $ABC$, let $H$ denote its orthocenter and let $D$ be a point on side $BC$. Let $P$ be the point so that $ADPH$ is a parallelogram. Prove that $\angle DCP<\angle BHP$.

1973 Canada National Olympiad, 6

If $A$ and $B$ are fixed points on a given circle not collinear with centre $O$ of the circle, and if $XY$ is a variable diameter, find the locus of $P$ (the intersection of the line through $A$ and $X$ and the line through $B$ and $Y$).

2009 Germany Team Selection Test, 2

Let triangle $ABC$ be perpendicular at $A.$ Let $M$ be the midpoint of segment $\overline{BC}.$ Point $D$ lies on side $\overline{AC}$ and satisfies $|AD|=|AM|.$ Let $P \neq C$ be the intersection of the circumcircle of triangles $AMC$ and $BDC.$ Prove that $CP$ bisects the angle at $C$ of triangle $ABC.$

2011 Greece National Olympiad, 4

We consider an acute angled triangle $ABC$ (with $AB<AC$) and its circumcircle $c(O,R) $(with center $O$ and semidiametre $R$).The altitude $AD$ cuts the circumcircle at the point $E$ ,while the perpedicular bisector $(m)$ of the segment $AB$,cuts $AD$ at the point $L$.$BL$ cuts $AC$ at the point $M$ and the circumcircle $c(O,R)$ at the point $N$.Finally $EN$ cuts the perpedicular bisector $(m)$ at the point $Z$.Prove that: \[ MZ \perp BC \iff \left(CA=CB \;\; \text{or} \;\; Z\equiv O \right) \]