This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2009 Brazil Team Selection Test, 2

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

2011 BMO TST, 3

In the acute angle triangle $ABC$ the point $O$ is the center of the circumscribed circle and the lines $OA,OB,OC$ intersect sides $BC,CA,AB$ respectively in points $M,N,P$ such that $\angle NMP=90^o$. [b](a)[/b] Find the ratios $\frac{\angle AMN}{\angle NMC}$,$\frac{\angle AMP}{\angle PMB}$. [b](b)[/b] If any of the angles of the triangle $ABC$ is $60^o$, find the two other angles.

2014 CentroAmerican, 2

Points $A$, $B$, $C$ and $D$ are chosen on a line in that order, with $AB$ and $CD$ greater than $BC$. Equilateral triangles $APB$, $BCQ$ and $CDR$ are constructed so that $P$, $Q$ and $R$ are on the same side with respect to $AD$. If $\angle PQR=120^\circ$, show that \[\frac{1}{AB}+\frac{1}{CD}=\frac{1}{BC}.\]

2001 Estonia Team Selection Test, 6

Let $C_1$ and $C_2$ be the incircle and the circumcircle of the triangle $ABC$, respectively. Prove that, for any point $A'$ on $C_2$, there exist points $B'$ and $C'$ such that $C_1$ and $C_2$ are the incircle and the circumcircle of triangle $A'B'C'$, respectively.

2000 All-Russian Olympiad, 3

In an acute scalene triangle $ABC$ the bisector of the acute angle between the altitudes $AA_1$ and $CC_1$ meets the sides $AB$ and $BC$ at $P$ and $Q$ respectively. The bisector of the angle $B$ intersects the segment joining the orthocenter of $ABC$ and the midpoint of $AC$ at point $R$. Prove that $P$, $B$, $Q$, $R$ lie on a circle.

2025 AIME, 5

Suppose $\triangle ABC$ has angles $\angle BAC = 84^\circ, \angle ABC=60^\circ,$ and $\angle ACB = 36^\circ.$ Let $D, E,$ and $F$ be the midpoints of sides $\overline{BC}, \overline{AC},$ and $\overline{AB},$ respectively. The circumcircle of $\triangle DEF$ intersects $\overline{BD}, \overline{AE},$ and $\overline{AF}$ at points $G, H,$ and $J,$ respectively. The points $G, D, E, H, J,$ and $F$ divide the circumcircle of $\triangle DEF$ into six minor arcs, as shown. Find $\overarc{DE}+2\cdot \overarc{HJ} + 3\cdot \overarc{FG},$ where the arcs are measured in degrees. [asy] import olympiad; size(6cm); defaultpen(fontsize(10pt)); pair B = (0, 0), A = (Cos(60), Sin(60)), C = (Cos(60)+Sin(60)/Tan(36), 0), D = midpoint(B--C), E = midpoint(A--C), F = midpoint(A--B); guide circ = circumcircle(D, E, F); pair G = intersectionpoint(B--D, circ), J = intersectionpoints(A--F, circ)[0], H = intersectionpoints(A--E, circ)[0]; draw(B--A--C--cycle); draw(D--E--F--cycle); draw(circ); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); dot(J); label("$A$", A, (0, .8)); label("$B$", B, (-.8, -.8)); label("$C$", C, (.8, -.8)); label("$D$", D, (0, -.8)); label("$E$", E, (.8, .2)); label("$F$", F, (-.8, .2)); label("$G$", G, (0, .8)); label("$H$", H, (-.2, -1)); label("$J$", J, (.2, -.8)); [/asy]

2011 Morocco National Olympiad, 3

Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.

2014 JBMO Shortlist, 3

Consider an acute triangle $ABC$ of area $S$. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by $H_1$ and $H_2$ the orthocentres of the triangles $MNC$, respectively $MND$. Find the area of the quadrilateral $AH_1BH_2$ in terms of $S$.

2002 Iran MO (3rd Round), 10

$H,I,O,N$ are orthogonal center, incenter, circumcenter, and Nagelian point of triangle $ABC$. $I_{a},I_{b},I_{c}$ are excenters of $ABC$ corresponding vertices $A,B,C$. $S$ is point that $O$ is midpoint of $HS$. Prove that centroid of triangles $I_{a}I_{b}I_{c}$ and $SIN$ concide.

2010 China Western Mathematical Olympiad, 2

$AB$ is a diameter of a circle with center $O$. Let $C$ and $D$ be two different points on the circle on the same side of $AB$, and the lines tangent to the circle at points $C$ and $D$ meet at $E$. Segments $AD$ and $BC$ meet at $F$. Lines $EF$ and $AB$ meet at $M$. Prove that $E,C,M$ and $D$ are concyclic.

2010 Albania Team Selection Test, 1

$ABC$ is an acute angle triangle such that $AB>AC$ and $\hat{BAC}=60^{\circ}$. Let's denote by $O$ the center of the circumscribed circle of the triangle and $H$ the intersection of altitudes of this triangle. Line $OH$ intersects $AB$ in point $P$ and $AC$ in point $Q$. Find the value of the ration $\frac{PO}{HQ}$.

2020 Iran Team Selection Test, 4

Let $ABC$ be an isosceles triangle ($AB=AC$) with incenter $I$. Circle $\omega$ passes through $C$ and $I$ and is tangent to $AI$. $\omega$ intersects $AC$ and circumcircle of $ABC$ at $Q$ and $D$, respectively. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $CQ$. Prove that $AD$, $MN$ and $BC$ are concurrent. [i]Proposed by Alireza Dadgarnia[/i]

1996 Bulgaria National Olympiad, 2

The quadrilateral $ABCD$ is inscribed in a circle. The lines $AB$ and $CD$ meet each other in the point $E$, while the diagonals $AC$ and $BD$ in the point $F$. The circumcircles of the triangles $AFD$ and $BFC$ have a second common point, which is denoted by $H$. Prove that $\angle EHF=90^\circ$.

2020 Ukrainian Geometry Olympiad - December, 5

Let $ABC$ be an acute triangle with $\angle ACB = 45^o$, $G$ is the point of intersection of the medians, and $O$ is the center of the circumscribed circle. If $OG =1$ and $OG \parallel BC$, find the length of $BC$.

2014 APMO, 5

Circles $\omega$ and $\Omega$ meet at points $A$ and $B$. Let $M$ be the midpoint of the arc $AB$ of circle $\omega$ ($M$ lies inside $\Omega$). A chord $MP$ of circle $\omega$ intersects $\Omega$ at $Q$ ($Q$ lies inside $\omega$). Let $\ell_P$ be the tangent line to $\omega$ at $P$, and let $\ell_Q$ be the tangent line to $\Omega$ at $Q$. Prove that the circumcircle of the triangle formed by the lines $\ell_P$, $\ell_Q$ and $AB$ is tangent to $\Omega$. [i]Ilya Bogdanov, Russia and Medeubek Kungozhin, Kazakhstan[/i]

Brazil L2 Finals (OBM) - geometry, 2009.6

Let $ ABC$ be a triangle and $ O$ its circumcenter. Lines $ AB$ and $ AC$ meet the circumcircle of $ OBC$ again in $ B_1\neq B$ and $ C_1 \neq C$, respectively, lines $ BA$ and $ BC$ meet the circumcircle of $ OAC$ again in $ A_2\neq A$ and $ C_2\neq C$, respectively, and lines $ CA$ and $ CB$ meet the circumcircle of $ OAB$ in $ A_3\neq A$ and $ B_3\neq B$, respectively. Prove that lines $ A_2A_3$, $ B_1B_3$ and $ C_1C_2$ have a common point.

2019 Estonia Team Selection Test, 2

In an acute-angled triangle $ABC$, the altitudes intersect at point $H$, and point $K$ is the foot of the altitude drawn from the vertex $A$. Circle $c$ passing through points $A$ and $K$ intersects sides $AB$ and $AC$ at points $M$ and $N$, respectively. The line passing through point $A$ and parallel to line $BC$ intersects the circumcircles of triangles $AHM$ and $AHN$ for second time, respectively, at points $X$ and $Y$. Prove that $ | X Y | = | BC |$.

2009 Saint Petersburg Mathematical Olympiad, 4

Points $A_1$ and $C_1$ are on $BC$ and $AB$ of acute-angled triangle $ABC$ . $AA_1$ and $CC_1$ intersect in $K$. Circumcircles of $AA_1B,CC_1B$ intersect in $P$ - incenter of $AKC$. Prove, that $P$ - orthocenter of $ABC$

1999 IberoAmerican, 2

An acute triangle $\triangle{ABC}$ is inscribed in a circle with centre $O$. The altitudes of the triangle are $AD,BE$ and $CF$. The line $EF$ cut the circumference on $P$ and $Q$. a) Show that $OA$ is perpendicular to $PQ$. b) If $M$ is the midpoint of $BC$, show that $AP^2=2AD\cdot{OM}$.

1989 AMC 12/AHSME, 19

A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths $3$, $4$, and $5$. What is the area of the triangle? $\textbf{(A)}\ 6 \qquad \textbf{(B)}\ \frac{18}{\pi^2} \qquad \textbf{(C)}\ \frac{9}{\pi^2}\left(\sqrt{3}-1\right) \qquad \textbf{(D)}\ \frac{9}{\pi^2}\left(\sqrt{3}+1\right) \qquad \textbf{(E)}\ \frac{9}{\pi^2}\left(\sqrt{3}+3\right)$

2017 Bosnia and Herzegovina Team Selection Test, Problem 6

Given is an acute triangle $ABC$. $M$ is an arbitrary point at the side $AB$ and $N$ is midpoint of $AC$. The foots of the perpendiculars from $A$ to $MC$ and $MN$ are points $P$ and $Q$. Prove that center of the circumcircle of triangle $PQN$ lies on the fixed line for all points $M$ from the side $AB$.

2004 Junior Balkan Team Selection Tests - Romania, 1

Let $ABC$ be a triangle inscribed in the circle $K$ and consider a point $M$ on the arc $BC$ that do not contain $A$. The tangents from $M$ to the incircle of $ABC$ intersect the circle $K$ at the points $N$ and $P$. Prove that if $\angle BAC = \angle NMP$, then triangles $ABC$ and $MNP$ are congruent. Valentin Vornicu [hide= about Romania JBMO TST 2004 in aops]I found the Romania JBMO TST 2004 links [url=https://artofproblemsolving.com/community/c6h5462p17656]here [/url] but they were inactive. So I am asking for solution for the only geo I couldn't find using search. The problems were found [url=https://artofproblemsolving.com/community/c6h5135p16284]here[/url].[/hide]

Geometry Mathley 2011-12, 3.3

A triangle $ABC$ is inscribed in circle $(O)$. $P1, P2$ are two points in the plane of the triangle. $P_1A, P_1B, P_1C$ meet $(O)$ again at $A_1,B_1,C_1$ . $P_2A, P_2B, P_2C$ meet $(O)$ again at $A_2,B_2,C_2$. a) $A_1A_2, B_1B_2, C_1C_2$ intersect $BC,CA,AB$ at $A_3,B_3,C_3$. Prove that three points $A_3,B_3,C_3$ are collinear. b) $P$ is a point on the line $P_1P_2. A_1P,B_1P,C_1P$ meet (O) again at $A_4,B_4,C_4$. Prove that three lines $A_2A_4,B_2B_4,C_2C_4$ are concurrent. Trần Quang Hùng

2024 India Regional Mathematical Olympiad, 3

Let $ABC$ be an acute triangle with $AB = AC$. Let $D$ be the point on $BC$ such that $AD$ is perpendicular to $BC$. Let $O,H,G$ be the circumcenter, orthocenter and centroid of triangle $ABC$ respectively. Suppose that $2 \cdot OD = 23 \cdot HD$. Prove that $G$ lies on the incircle of triangle $ABC$.

2022 Germany Team Selection Test, 2

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.