This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2020 Brazil Cono Sur TST, 1

Let $D$ and $E$ be points on sides $AB$ and $AC$ of a triangle $ABC$ such that $DB = BC = CE$. The segments $BE$ and $CD$ intersect at point $P$. Prove that the incenter of triangle $ABC$ lies on the circles circumscribed around the triangles $BDP$ and $CEP$.

2000 IMO Shortlist, 3

Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Show that there exist points $D$, $E$, and $F$ on sides $BC$, $CA$, and $AB$ respectively such that \[ OD + DH = OE + EH = OF + FH\] and the lines $AD$, $BE$, and $CF$ are concurrent.

2006 IMO Shortlist, 1

Let $ABC$ be triangle with incenter $I$. A point $P$ in the interior of the triangle satisfies \[\angle PBA+\angle PCA = \angle PBC+\angle PCB.\] Show that $AP \geq AI$, and that equality holds if and only if $P=I$.

2003 Polish MO Finals, 5

The sphere inscribed in a tetrahedron $ABCD$ touches face $ABC$ at point $H$. Another sphere touches face $ABC$ at $O$ and the planes containing the other three faces at points exterior to the faces. Prove that if $O$ is the circumcenter of triangle $ABC$, then $H$ is the orthocenter of that triangle.

2009 Polish MO Finals, 5

A sphere is inscribed in tetrahedron $ ABCD$ and is tangent to faces $ BCD,CAD,ABD,ABC$ at points $ P,Q,R,S$ respectively. Segment $ PT$ is the sphere's diameter, and lines $ TA,TQ,TR,TS$ meet the plane $ BCD$ at points $ A',Q',R',S'$. respectively. Show that $ A$ is the center of a circumcircle on the triangle $ S'Q'R'$.

2016 Sharygin Geometry Olympiad, 1

A line parallel to the side $BC$ of a triangle $ABC$ meets the sides $AB$ and $AC$ at points $P$ and $Q$, respectively. A point $M$ is chosen inside the triangle $APQ$. The segments $MB$ and $MC$ meet the segment $PQ$ at points $E$ and $F$, respectively. Let $N$ be the second intersection point of the circumcircles of the triangles $PMF$ and $QME$. Prove that the points $A,M,N$ are collinear.

2011 Postal Coaching, 1

Let $ABC$ be a triangle in which $\angle BAC = 60^{\circ}$ . Let $P$ (similarly $Q$) be the point of intersection of the bisector of $\angle ABC$(similarly of $\angle ACB$) and the side $AC$(similarly $AB$). Let $r_1$ and $r_2$ be the in-radii of the triangles $ABC$ and $AP Q$, respectively. Determine the circum-radius of $APQ$ in terms of $r_1$ and $r_2$.

2018 Greece JBMO TST, 2

Let $ABC$ be an acute triangle with $AB<AC<BC, c$ it's circumscribed circle and $D,E$ be the midpoints of $AB,AC$ respectively. With diameters the sides $AB,AC$, we draw semicircles, outer of the triangle, which are intersected by line $D$ at points $M$ and $N$ respectively. Lines $MB$ and $NC$ intersect the circumscribed circle at points $T,S$ respectively. Lines $MB$ and $NC$ intersect at point $H$. Prove that: a) point $H$ lies on the circumcircle of triangle $AMN$ b) lines $AH$ and $TS$ are perpedicular and their intersection, let it be $Z$, is the circimcenter of triangle $AMN$

2020 ITAMO, 1

Let $\omega$ be a circle and let $A,B,C,D,E$ be five points on $\omega$ in this order. Define $F=BC\cap DE$, such that the points $F$ and $A$ are on opposite sides, with regard to the line $BE$ and the line $AE$ is tangent to the circumcircle of the triangle $BFE$. a) Prove that the lines $AC$ and $DE$ are parallel b) Prove that $AE=CD$

2016 Czech-Polish-Slovak Match, 3

Let $ABC$ be an acute-angled triangle with $AB < AC$. Tangent to its circumcircle $\Omega$ at $A$ intersects the line $BC$ at $D$. Let $G$ be the centroid of $\triangle ABC$ and let $AG$ meet $\Omega$ again at $H \neq A$. Suppose the line $DG$ intersects the lines $AB$ and $AC$ at $E$ and $F$, respectively. Prove that $\angle EHG = \angle GHF$.(Slovakia)

2011 Federal Competition For Advanced Students, Part 2, 3

We are given a non-isosceles triangle $ABC$ with incenter $I$. Show that the circumcircle $k$ of the triangle $AIB$ does not touch the lines $CA$ and $CB$. Let $P$ be the second point of intersection of $k$ with $CA$ and let $Q$ be the second point of intersection of $k$ with $CB$. Show that the four points $A$, $B$, $P$ and $Q$ (not necessarily in this order) are the vertices of a trapezoid.

2014 AMC 12/AHSME, 10

Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles? $\textbf{(A) }\dfrac{\sqrt3}4\qquad \textbf{(B) }\dfrac{\sqrt3}3\qquad \textbf{(C) }\dfrac23\qquad \textbf{(D) }\dfrac{\sqrt2}2\qquad \textbf{(E) }\dfrac{\sqrt3}2$

2008 Princeton University Math Competition, A9

In tetrahedron $ABCD$ with circumradius $2$, $AB = 2$, $CD = \sqrt{7}$, and $\angle ABC = \angle BAD = \frac{\pi}{2}$. Find all possible angles between the planes containing $ABC$ and $ABD$.

2012 Balkan MO Shortlist, G3

Let $ABC$ be a triangle with circumcircle $c$ and circumcenter $O$, and let $D$ be a point on the side $BC$ different from the vertices and the midpoint of $BC$. Let $K$ be the point where the circumcircle $c_1$ of the triangle $BOD$ intersects $c$ for the second time and let $Z$ be the point where $c_1$ meets the line $AB$. Let $M$ be the point where the circumcircle $c_2$ of the triangle $COD$ intersects $c$ for the second time and let $E$ be the point where $c_2$ meets the line $AC$. Finally let $N$ be the point where the circumcircle $c_3$ of the triangle $AEZ$ meets $c$ again. Prove that the triangles $ABC$ and $NKM$ are congruent.

2018 Romania National Olympiad, 2

Let $ABC$ be a triangle, $O$ its circumcenter and $R=1$ its circumradius. Let $G_1,G_2,G_3$ be the centroids of the triangles $OBC, OAC$ and $OAB.$ Prove that the triangle $ABC$ is equilateral if and only if $$AG_1+BG_2+CG_3=4$$

2010 Junior Balkan Team Selection Tests - Romania, 4

Let a triangle $ABC$ , $O$ it's circumcenter , $H$ ortocenter and $M$ the midpoint of $AH$. The perpendicular at $M$ to line $OM$ meets $AB$ and $AC$ at points $P$, respective $Q$. Prove that $MP=MQ$. Babis

1998 Austrian-Polish Competition, 9

Given a triangle $ABC$, points $K,L,M$ are the midpoints of the sides $BC,CA,AB$, and points $X,Y,Z$ are the midpoints of the arcs $BC,CA,AB$ of the circumcircle not containing $A,B,C$ respectively. If $R$ denotes the circumradius and $r$ the inradius of the triangle, show that $r+KX+LY+MZ=2R$.

2017 Hong Kong TST, 1

In $\triangle ABC$, let $AD$ be the angle bisector of $\angle BAC$, with $D$ on $BC$. The perpendicular from $B$ to $AD$ intersects the circumcircle of $\triangle ABD$ at $B$ and $E$. Prove that $E$, $A$ and the circumcenter $O$ of $\triangle ABC$ are collinear.

2005 Bulgaria National Olympiad, 2

Consider two circles $k_{1},k_{2}$ touching externally at point $T$. a line touches $k_{2}$ at point $X$ and intersects $k_{1}$ at points $A$ and $B$. Let $S$ be the second intersection point of $k_{1}$ with the line $XT$ . On the arc $\widehat{TS}$ not containing $A$ and $B$ is chosen a point $C$ . Let $\ CY$ be the tangent line to $k_{2}$ with $Y\in k_{2}$ , such that the segment $CY$ does not intersect the segment $ST$ . If $I=XY\cap SC$ . Prove that : (a) the points $C,T,Y,I$ are concyclic. (b) $I$ is the excenter of triangle $ABC$ with respect to the side $BC$.

2000 Romania Team Selection Test, 2

Let ABC be a triangle and $M$ be an interior point. Prove that \[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]

2012 Czech-Polish-Slovak Match, 1

Let $ABC$ be a right angled triangle with hypotenuse $AB$ and $P$ be a point on the shorter arc $AC$ of the circumcircle of triangle $ABC$. The line, perpendicuar to $CP$ and passing through $C$, intersects $AP$, $BP$ at points $K$ and $L$ respectively. Prove that the ratio of area of triangles $BKL$ and $ACP$ is independent of the position of point $P$.

1960 AMC 12/AHSME, 15

Triangle I is equilateral with side $A$, perimeter $P$, area $K$, and circumradius $R$ (radius of the circumscribed circle). Triangle II is equilateral with side $a$, perimeter $p$, area $k$, and circumradius $r$. If $A$ is different from $a$, then: $ \textbf{(A)}\ P:p = R:r \text{ } \text{only sometimes} \qquad\textbf{(B)}\ P:p = R:r \text{ } \text{always}\qquad$ $\textbf{(C)}\ P:p = K:k \text{ } \text{only sometimes} \qquad\textbf{(D)}\ R:r = K:k \text{ } \text{always}\qquad$ $\textbf{(E)}\ R:r = K:k \text{ } \text{only sometimes} $

1992 Taiwan National Olympiad, 5

A line through the incenter $I$ of triangle $ABC$, perpendicular to $AI$, intersects $AB$ at $P$ and $AC$ at $Q$. Prove that the circle tangent to $AB$ at $P$ and to $AC$ at $Q$ is also tangent to the circumcircle of triangle $ABC$.

2009 Indonesia TST, 4

Given triangle $ ABC$ with $ AB>AC$. $ l$ is tangent line of the circumcircle of triangle $ ABC$ at $ A$. A circle with center $ A$ and radius $ AC$, intersect $ AB$ at $ D$ and $ l$ at $ E$ and $ F$. Prove that the lines $ DE$ and $ DF$ pass through the incenter and excenter of triangle $ ABC$.

2017 Switzerland - Final Round, 5

Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.