This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 254

2021 Yasinsky Geometry Olympiad, 6

Given a quadrilateral $ABCD$, around which you can circumscribe a circle. The perpendicular bisectors of sides $AD$ and $CD$ intersect at point $Q$ and intersect sides $BC$ and $AB$ at points $P$ and $K$ resepctively. It turned out that the points $K, B, P, Q$ lie on the same circle. Prove that the points $A, Q, C$ lie on one line. (Olena Artemchuk)

Ukraine Correspondence MO - geometry, 2011.9

On the diagonals $AC$ and $CE$ of a regular hexagon $ABCDEF$ with side $1$ we mark points$ M$ and $N$ such that $AM = CN = a$. Find $a$ if the points $B, M, N$ lie on the same line.

1998 Belarusian National Olympiad, 6

Points $M$ and $N$ are marked on the straight line containing the side $AC$ of triangle $ABC$ so that $MA = AB$ and $NC = CB$ (the order of the points on the line: $M, A, C, N$). Prove that the center of the circle inscribed in triangle $ABC$ lies on the common chord of the circles circumscribed around triangles $MCB$ and $NAB$ .

2019 Thailand TSTST, 2

Let $\Omega$ be the inscribed circle of a triangle $\vartriangle ABC$. Let $D, E$ and $F$ be the tangency points of $\Omega$ and the sides $BC, CA$ and $AB$, respectively, and let $AD, BE$ and $CF$ intersect $\Omega$ at $K, L$ and $M$, respectively, such that $D, E, F, K, L$ and $M$ are all distinct. The tangent line of $\Omega$ at $K$ intersects $EF$ at $X$, the tangent line of $\Omega$ at $L$ intersects $DE$ at $Y$ , and the tangent line of $\Omega$ at M intersects $DF$ at $Z$. Prove that $X,Y$ and $Z$ are collinear.

Geometry Mathley 2011-12, 9.3

Let $ABCD$ be a quadrilateral inscribed in a circle $(O)$. Let $(O_1), (O_2), (O_3), (O_4)$ be the circles going through $(A,B), (B,C),(C,D),(D,A)$. Let $X, Y,Z, T$ be the second intersection of the pairs of the circles: $(O_1)$ and $(O_2), (O_2)$ and $(O_3), (O_3)$ and $(O_4), (O_4)$ and $(O_1)$. (a) Prove that $X, Y,Z, T$ are on the same circle of radius $I$. (b) Prove that the midpoints of the line segments $O_1O_3,O_2O_4,OI$ are collinear. Nguyễn Văn Linh

Ukraine Correspondence MO - geometry, 2020.11

The diagonals of the cyclic quadrilateral $ABCD$ intersect at the point $E$. Let $P$ and $Q$ are the centers of the circles circumscribed around the triangles $BCE$ and $DCE$, respectively. A straight line passing through the point $P$ parallel to $AB$, and a straight line passing through the point $Q$ parallel to $AD$, intersect at the point $R$. Prove that the point $R$ lies on segment $AC$.

Ukrainian TYM Qualifying - geometry, 2011.11

Let $BB_1$ and $CC_1$ be the altitudes of an acute-angled triangle $ABC$, which intersect its angle bisector $AL$ at two different points $P$ and $Q$, respectively. Denote by $F$ such a point that $PF\parallel AB$ and $QF\parallel AC$, and by $T$ the intersection point of the tangents drawn at points $B$ and $C$ to the circumscribed circle of the triangle $ABC$. Prove that the points $A, F$ and $T$ lie on the same line.

2020 Mediterranean Mathematics Olympiad, 4

Let $P,Q,R$ be three points on a circle $k_1$ with $|PQ|=|PR|$ and $|PQ|>|QR|$. Let $k_2$ be the circle with center in $P$ that goes through $Q$ and $R$. The circle with center $Q$ through $R$ intersects $k_1$ in another point $X\ne R$ and intersects $k_2$ in another point $Y\ne R$. The two points $X$ and $R$ lie on different sides of the line through $PQ$. Show that the three points $P$, $X$, $Y$ lie on a common line.

2016 Saudi Arabia Pre-TST, 2.3

Let $ABC$ be a non isosceles triangle with circumcircle $(O)$ and incircle $(I)$. Denote $(O_1)$ as the circle internal tangent to $(O)$ at $A_1$ and also tangent to segments $AB,AC$ at $A_b,A_c$ respectively. Define the circles $(O_2), (O_3)$ and the points $B_1, C_1, B_c , B_a, C_a, C_b$ similarly. 1. Prove that $AA_1, BB_1, CC_1$ are concurrent at the point $M$ and $3$ points $I,M,O$ are collinear. 2. Prove that the circle $(I)$ is inscribed in the hexagon with $6$ vertices $A_b,A_c , B_c , B_a, C_a, C_b$.

2017 Saudi Arabia BMO TST, 3

Let $ABC$ be an acute triangle and $(O)$ be its circumcircle. Denote by $H$ its orthocenter and $I$ the midpoint of $BC$. The lines $BH, CH$ intersect $AC,AB$ at $E, F$ respectively. The circles $(IBF$) and $(ICE)$ meet again at $D$. a) Prove that $D, I,A$ are collinear and $HD, EF, BC$ are concurrent. b) Let $L$ be the foot of the angle bisector of $\angle BAC$ on the side $BC$. The circle $(ADL)$ intersects $(O)$ again at $K$ and intersects the line $BC$ at $S$ out of the side $BC$. Suppose that $AK,AS$ intersects the circles $(AEF)$ again at $G, T$ respectively. Prove that $TG = TD$.

1972 Vietnam National Olympiad, 3

$ABC$ is a triangle. $U$ is a point on the line $BC$. $I$ is the midpoint of $BC$. The line through $C$ parallel to $AI$ meets the line $AU$ at $E$. The line through $E$ parallel to $BC$ meets the line $AB$ at $F$. The line through $E$ parallel to $AB$ meets the line $BC$ at $H$. The line through $H$ parallel to $AU$ meets the line $AB$ at $K$. The lines $HK$ and $FG$ meet at $T. V$ is the point on the line $AU$ such that $A$ is the midpoint of $UV$. Show that $V, T$ and $I$ are collinear.

2011 Sharygin Geometry Olympiad, 23

Given are triangle $ABC$ and line $\ell$ intersecting $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. Point $A'$ is the midpoint of the segment between the projections of $A_1$ to $AB$ and $AC$. Points $B'$ and $C'$ are defined similarly. (a) Prove that $A', B'$ and $C'$ lie on some line $\ell'$. (b) Suppose $\ell$ passes through the circumcenter of $\triangle ABC$. Prove that in this case $\ell'$ passes through the center of its nine-points circle. [i]M. Marinov and N. Beluhov[/i]

2022-IMOC, G2

The incenter of triangle $ABC$ is $ I$. the circumcircle of $ABC$ is tangent to $BC$, $CA$, $AB$ at $T, E, F$. $R$ is a point on $BC$ . Let the $C$-excenter of $\vartriangle CER$ be $L$. Prove that points $L,T,F$ are collinear if and only if $B,E,A,R$ are concyclic. [i]proposed by kyou46[/i]

2011 Oral Moscow Geometry Olympiad, 5

Let $AA _1$ and $BB_1$ be the altitudes of an isosceles acute-angled triangle $ABC, M$ the midpoint of $AB$. The circles circumscribed around the triangles $AMA_1$ and $BMB_1$ intersect the lines $AC$ and $BC$ at points $K$ and $L$, respectively. Prove that $K, M$, and $L$ lie on the same line.

2019 Regional Olympiad of Mexico Center Zone, 4

Let $ABC$ be a triangle with $\angle BAC> 90 ^ \circ$ and $D$ a point on $BC$. Let $E$ and $F$be the reflections of the point $D$ about $AB$ and $AC$, respectively. Suppose that $BE$ and $CF$ intersect at $P$. Show that $AP$ passes through the circumcenter of triangle $ABC$.

2004 Tournament Of Towns, 1

Segments $AB, BC$ and $CD$ of the broken line $ABCD$ are equal and are tangent to a circle with centre at the point $O$. Prove that the point of contact of this circle with $BC$, the point $O$ and the intersection point of $AC$ and $BD$ are collinear.

2013 District Olympiad, 3

On the sides $(AB)$ and $(AC)$ of the triangle $ABC$ are considered the points $M$ and $N$ respectively so that $ \angle ABC =\angle ANM$. Point $D$ is symmetric of point $A$ with respect to $B$, and $P$ and $Q$ are the midpoints of the segments $[MN]$ and $[CD]$, respectively. Prove that the points $A, P$ and $Q$ are collinear if and only if $AC = AB \sqrt {2}$

Indonesia Regional MO OSP SMA - geometry, 2020.4

It is known that triangle $ABC$ is not isosceles with altitudes of $AA_1, BB_1$, and $CC_1$. Suppose $B_A$ and $C_A$ respectively points on $BB_1$ and $CC_1$ so that $A_1B_A$ is perpendicular on $BB_1$ and $A_1C_A$ is perpendicular on $CC_1$. Lines $B_AC_A$ and $BC$ intersect at the point $T_A$ . Define in the same way the points $T_B$ and $T_C$ . Prove that points $T_A, T_B$, and $T_C$ are collinear.

2017 Puerto Rico Team Selection Test, 3

In triangle $ABC$, the altitude through $B$ intersects $AC$ at $E$ and the altitude through $C$ intersects $AB$ at $F$. Point $T$ is such that $AETF$ is a parallelogram and points $ A$ ,$T$ lie on different half-planes wrt the line $EF$. Point $D$ is such that $ABDC$ is a parallelogram and points $ A$ ,$D$ lie in different half-planes wrt line $BC$. Prove that $T, D$ and the orthocenter of $ABC$ are collinear.

2023 New Zealand MO, 3

Let $ABCD$ be a square (vertices labelled in clockwise order). Let $Z$ be any point on diagonal $AC$ between $A$ and $C$ such that $AZ > ZC$. Points $X$ and $Y$ exist such that $AXY Z $ is a square (vertices labelled in clockwise order) and point $B$ lies inside $AXY Z$. Let $M$ be the point of intersection of lines $BX$ and $DZ$ (extended if necessary). Prove that $C$, $M$ and $Y$ are colinear

2014 Czech and Slovak Olympiad III A, 5

Given is the acute triangle $ABC$. Let us denote $k$ a circle with diameter $AB$. Another circle, tangent to $AB$ at point $A$ and passing through point $C$ intersects the circle $k$ at point $P, P \ne A$. Another circle which touches AB at point $B$ and passes point $C$, intersects the circle $k$ at point $Q, Q \ne B$. Prove that the intersection of the line $AQ$ and $BP$ lies on one of the sides of angle $ACB$. (Peter Novotný)

Durer Math Competition CD Finals - geometry, 2018.D4

Triangle $A'B'C'$ is located inside triangle $ABC$ such that $AB \parallel A'B' $, $BC \parallel B'C'$ and $CA \parallel C'A'$ , and all three sides of these parallel sides are at distance $d$ at each case. Let $O$ and $O'$ be the centers of the inscribed circles of the triangles $ABC$ and $A'B'C'$ and $K$ and $K'$ are the the centers of their circumcircles. Prove that points $O, O', K$ and $K'$ lie on a straight line.

2018 Pan-African Shortlist, G4

Let $ABC$ be a triangle and $\Gamma$ be the circle with diameter $[AB]$. The bisectors of $\angle BAC$ and $\angle ABC$ cut the circle $\Gamma$ again at $D$ and $E$, respectively. The incicrcle of the triangle $ABC$ cuts the lines $BC$ and $AC$ in $F$ and $G$, respectively. Show that the points $D, E, F$ and $G$ lie on the same line.

2015 Saudi Arabia BMO TST, 3

Let $ABC$ be a triangle, $H_a, H_b$ and $H_c$ the feet of its altitudes from $A, B$ and $C$, respectively, $T_a, T_b, T_c$ its touchpoints of the incircle with the sides $BC, CA$ and $AB$, respectively. The circumcircles of triangles $AH_bH_c$ and $AT_bT_c$ intersect again at $A'$. The circumcircles of triangles $BH_cH_a$ and $BT_cT_a$ intersect again at $B'$. The circumcircles of triangles $CH_aH_b$ and $CT_aT_b$ intersect again at $C'$. Prove that the points $A',B',C'$ are collinear. Malik Talbi

2018 Bosnia And Herzegovina - Regional Olympiad, 5

Let $H$ be an orhocenter of an acute triangle $ABC$ and $M$ midpoint of side $BC$. If $D$ and $E$ are foots of perpendicular of $H$ on internal and external angle bisector of angle $\angle BAC$, prove that $M$, $D$ and $E$ are collinear