Found problems: 257
2007 Korea Junior Math Olympiad, 4
Let $P$ be a point inside $\triangle ABC$. Let the perpendicular bisectors of $PA,PB,PC$ be $\ell_1,\ell_2,\ell_3$. Let $D =\ell_1 \cap \ell_2$ , $E=\ell_2 \cap \ell_3$, $F=\ell_3 \cap \ell_1$. If $A,B,C,D,E,F$ lie on a circle, prove that $C, P,D$ are collinear.
Estonia Open Junior - geometry, 2001.1.3
Consider points $C_1, C_2$ on the side $AB$ of a triangle $ABC$, points $A_1, A_2$ on the side $BC$ and points $B_1 , B_2$ on the side $CA$ such that these points divide the corresponding sides to three equal parts. It is known that all the points $A_1, A_2, B_1, B_2 , C_1$ and $C_2$ are concyclic. Prove that triangle $ABC$ is equilateral.
2018 Adygea Teachers' Geometry Olympiad, 3
Two circles intersect at points $A$ and $B$. Through point $B$, a straight line intersects the circles at points $C$ and $D$, and then tangents to the circles are drawn through points $C$ and $D$. Prove that the points $A, D, C$ and $P$ - the intersection point of the tangents - lie on the same circle.
2006 Estonia Team Selection Test, 2
The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.
2020-IMOC, G5
Let $O, H$ be the circumcentor and the orthocenter of a scalene triangle $ABC$. Let $P$ be the reflection of $A$ w.r.t. $OH$, and $Q$ is a point on $\odot (ABC)$ such that $AQ, OH, BC$ are concurrent. Let $A'$ be a points such that $ABA'C$ is a parallelogram. Show that $A', H, P, Q$ are concylic.
(ltf0501).
2021 Federal Competition For Advanced Students, P2, 5
Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie.
(a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it.
(b) Show that in all other cases the four points thus obtained lie on one circle.
(Theresia Eisenkölbl)
Kyiv City MO Juniors 2003+ geometry, 2012.9.5
The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the angle bisector of $\angle BAC$ intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$. The midline of $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$, the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed around the quadrilateral $BNKM$.
(Nagel Igor)
2003 All-Russian Olympiad Regional Round, 9.6
Let $I$ be the intersection point of the bisectors of triangle $ABC$. Let us denote by $A', B', C'$ the points symmetrical to $I$ wrt the sides triangle $ABC$. Prove that if a circle circumscribes around triangle $A'B'C'$ passes through vertex $B$, then $\angle ABC = 60^o$.
2023 Yasinsky Geometry Olympiad, 4
$ABC$ is an acute triangle and $AD$, $BE$ and $CF$ are the altitudes, with $H$ being the point of intersection of these altitudes. Points $A_1$, $B_1$, $C_1$ are chosen on rays $AD$, $BE$ and $CF$ respectively such that $AA_1 = HD$, $BB_1 = HE$ and $CC_1 =HF$. Let $A_2$, $B_2$ and $C_2$ be midpoints of segments $A_1D$, $B_1E$ and $C_1F$ respectively. Prove that $H$, $A_2$, $B_2$ and $C_2$ are concyclic.
(Mykhailo Barkulov)
2013 Vietnam Team Selection Test, 5
Let $ABC$ be a triangle with $\angle BAC= 45^o$ . Altitudes $AD, BE, CF$ meet at $H$. $EF$ cuts $BC$ at $P$. $I$ is the midpoint of $BC$, $IF$ cuts $PH$ in $Q$.
a) Prove that $\angle IQH = \angle AIE$.
b) Let $(K)$ be the circumcircle of triangle $ABC$, $(J)$ be the circumcircle of triangle $KPD$. $CK$ cuts circle $(J)$ at $G$, $IG$ cuts $(J)$ at $M$, $JC$ cuts circle of diameter $BC$ at $N$. Prove that $G, N, M, C$ lie on the same circle.
2021 China Girls Math Olympiad, 7
In an acute triangle $ABC$, $AB \neq AC$, $O$ is its circumcenter. $K$ is the reflection of $B$ over $AC$ and $L$ is the reflection of $C$ over $AB$. $X$ is a point within $ABC$ such that $AX \perp BC, XK=XL$. Points $Y, Z$ are on $\overline{BK}, \overline{CL}$ respectively, satisfying $XY \perp CK, XZ \perp BL$.
Proof that $B, C, Y, O, Z$ lie on a circle.
Croatia MO (HMO) - geometry, 2013.3
Given a pointed triangle $ABC$ with orthocenter $H$. Let $D$ be the point such that the quadrilateral $AHCD$ is parallelogram. Let $p$ be the perpendicular to the direction $AB$ through the midpoint $A_1$ of the side $BC$. Denote the intersection of the lines $p$ and $AB$ with $E$, and the midpoint of the length $A_1E$ with $F$. The point where the parallel to the line $BD$ through point $A$ intersects $p$ denote by $G$. Prove that the quadrilateral $AFA_1C$ is cyclic if and only if the lines $BF$ passes through the midpoint of the length $CG$.
2014 Belarus Team Selection Test, 1
Circles $\Gamma_1$ and $\Gamma_2$ meet at points $X$ and $Y$. A circle $S_1$ touches internally $\Gamma_1$ at $A$ and $\Gamma_2$ externally at $B$. A circle $S_2$ touches $\Gamma_2$ internally at $C$ and $\Gamma_1$ externally at $D$. Prove that the points $A, B, C, D$ are either collinear or concyclic.
(A. Voidelevich)
Croatia MO (HMO) - geometry, 2019.3
Given an isosceles triangle $ABC$ such that $|AB|=|AC|$ . Let $M$ be the midpoint of the segment $BC$ and let $P$ be a point other than $A$ such that $PA\parallel BC$. The points $X$ and $Y$ are located respectively on rays $PB$ and $PC$, so that the point $B$ is between $P$ and $X$, the point $C$ is between $P$ and $Y$ and $\angle PXM=\angle PYM$. Prove that the points $A,P,X$ and $Y$ are concyclic.
1995 Poland - Second Round, 5
The incircles of the faces $ABC$ and $ABD$ of a tetrahedron $ABCD$ are tangent to the edge $AB$ in the same point. Prove that the points of tangency of these incircles to the edges $AC,BC,AD,BD$ are concyclic.
2009 Moldova National Olympiad, 10.3
Let the triangle $ABC$ be with $| AB | > | AC |$. Point M is the midpoint of the side $[BC]$, and point $I$ is the center of the circle inscribed in the triangle ABC such that the relation $| AI | = | MI |$. Prove that points $A, B, M, I$ are located on the same circle.
2014 Junior Balkan Team Selection Tests - Romania, 4
In a circle, consider two chords $[AB], [CD]$ that intersect at $E$, lines $AC$ and $BD$ meet at $F$. Let $G$ be the projection of $E$ onto $AC$. We denote by $M,N,K$ the midpoints of the segment lines $[EF] ,[EA]$ and $[AD]$, respectively. Prove that the points $M, N,K,G$ are concyclic.
2016 Regional Olympiad of Mexico Northeast, 2
Let $ABC$ be a triangle with $AB = AC$ with centroid $G$. Let $M$ and $N$ be the midpoints of $AB$ and $AC$ respectively and $O$ be the circumcenter of triangle $BCN$ . Prove that $MBOG$ is a cyclic quadrilateral .
2008 Korea Junior Math Olympiad, 1
In a $\triangle XYZ$, points $A,B$ lie on segment $ZX, C,D$ lie on segment $XY , E, F$ lie on segment $YZ$. $A, B, C, D$ lie on a circle, and $\frac{AZ \cdot EY \cdot ZB \cdot Y F}{EZ \cdot CY \cdot ZF \cdot Y D}= 1$ . Let $L = ZX \cap DE$, $M = XY \cap AF$, $N = Y Z \cap BC$. Prove that $L,M,N$ are collinear.
2022 Indonesia TST, G
Let $AB$ be the diameter of circle $\Gamma$ centred at $O$. Point $C$ lies on ray $\overrightarrow{AB}$. The line through $C$ cuts circle $\Gamma$ at $D$ and $E$, with point $D$ being closer to $C$ than $E$ is. $OF$ is the diameter of the circumcircle of triangle $BOD$. Next, construct $CF$, cutting the circumcircle of triangle $BOD$ at $G$. Prove that $O,A,E,G$ are concyclic.
(Possibly proposed by Pak Wono)
1977 Kurschak Competition, 2
$ABC$ is a triangle with orthocenter $H$. The median from $A$ meets the circumcircle again at $A_1$, and $A_2$ is the reflection of $A_1$ in the midpoint of $BC$. The points$ B_2$ and $C_2$ are defined similarly. Show that $H$, $A_2$, $B_2$ and $C_2$ lie on a circle.
[img]https://cdn.artofproblemsolving.com/attachments/f/1/192d14a0a7a9aa9ac7b38763e6ea6a4a95be55.png[/img]
2022 IFYM, Sozopol, 7
Given an acute-angled $\vartriangle ABC$ with orthocenter $H$ and altitude $CC_1$. Points $D, E$ and $F$ lie on the segments $AC$, $BC$ and $AB$ respectively, so that $DE \parallel AB$ and $EF \parallel AC$. Denote by $Q$ the symmetric point of $H$ wrt to the midpoint of $DE$. Let $BD \cap CF = P$. If $HP \parallel AB$, prove that the points $C_1, D, Q$ and $E$ lie on a circle.
1992 Czech And Slovak Olympiad IIIA, 6
Let $ABC$ be an acute triangle. The altitude from $B$ meets the circle with diameter $AC$ at points $P,Q$, and the altitude from $C$ meets the circle with diameter $AB$ at $M,N$. Prove that the points $M,N,P,Q$ lie on a circle.
2000 All-Russian Olympiad Regional Round, 10.7
In a convex quadrilateral $ABCD$ we draw the bisectors $\ell_a$, $\ell_b$, $\ell_c$, $\ell_d$ of external angles $A$, $B$, $C$, $D$ respectively. The intersection points of the lines $\ell_a$ and $\ell_b$, $\ell_b$ and $\ell_c$, $\ell_c$ and $\ell_d$, $\ell_d$ and $\ell_a$ are designated by $K$, $L$, $M$, $N$. It is known that $3$ perpendiculars drawn from $K$ on $AB$, from $L$ om $BC$, from $M$ on $CD$ intersect at one point. Prove that the quadrilateral $ABCD$ is cyclic.
2018 Ecuador NMO (OMEC), 5
Let $ABC$ be an acute triangle and let $M$, $N$, and $ P$ be on $CB$, $AC$, and $AB$, respectively, such that $AB = AN + PB$, $BC = BP + MC$, $CA = CM + AN$. Let $\ell$ be a line in a different half plane than $C$ with respect to to the line $AB$ such that if $X, Y$ are the projections of $A, B$ on $\ell$ respectively, $AX = AP$ and $BY = BP$. Prove that $NXYM$ is a cyclic quadrilateral.