This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 257

2009 Postal Coaching, 3

Let $ABC$ be a triangle with circumcentre $O$ and incentre $I$ such that $O$ is different from $I$. Let $AK, BL, CM$ be the altitudes of $ABC$, let $U, V , W$ be the mid-points of $AK, BL, CM$ respectively. Let $D, E, F$ be the points at which the in-circle of $ABC$ respectively touches the sides $BC, CA, AB$. Prove that the lines $UD, VE, WF$ and $OI$ are concurrent.

2023 Dutch IMO TST, 3

The center $O$ of the circle $\omega$ passing through the vertex $C$ of the isosceles triangle $ABC$ ($AB = AC$) is the interior point of the triangle $ABC$. This circle intersects segments $BC$ and $AC$ at points $D \ne C$ and $E \ne C$, respectively, and the circumscribed circle $\Omega$ of the triangle $AEO$ at the point $F \ne E$. Prove that the center of the circumcircle of the triangle $BDF$ lies on the circle $\Omega$.

2022 Nigerian Senior MO Round 2, Problem 2

Let $G$ be the centroid of $\triangle ABC $ and let $D, E $ and $F$ be the midpoints of the line segments $BC, CA $ and $AB$ respectively. Suppose the circumcircle of $\triangle ABC $ meets $AD $ again at $X$, the circumcircle of $\triangle DEF $ meets $BE$ again at $Y$ and the circumcircle of $\triangle DEF $ meets $CF$ again at $Z$. Show that $G, X, Y $ and $Z$ are concyclic.

Croatia MO (HMO) - geometry, 2012.7

Let the points $M$ and $N$ be the intersections of the inscribed circle of the right-angled triangle $ABC$, with sides $AB$ and $CA$ respectively , and points $P$ and $Q$ respectively be the intersections of the ex-scribed circles opposite to vertices $B$ and $C$ with direction $BC$. Prove that the quadrilateral $MNPQ$ is a cyclic if and only if the triangle $ABC$ is right-angled with a right angle at the vertex $A$.

Kyiv City MO Juniors Round2 2010+ geometry, 2021.7.4

The sides of the triangle $ABC$ are extended in both directions and on these extensions $6$ equal segments $AA_1 , AA_2, BB_1,BB_2, CC_1, CC_2$ are drawn (fig.). It turned out that all $6$ points $A_1,A_2,B_1,B_2,C_1, C_2$ lie on the same circle, is $\vartriangle ABC$ necessarily equilateral? (Bogdan Rublev) [img]https://cdn.artofproblemsolving.com/attachments/0/3/a499f6e6d978ce63d2ab40460dc73b62882863.png[/img]

2018 Iranian Geometry Olympiad, 5

$ABCD$ is a cyclic quadrilateral. A circle passing through $A,B$ is tangent to segment $CD$ at point $E$. Another circle passing through $C,D$ is tangent to $AB$ at point $F$. Point $G$ is the intersection point of $AE,DF$, and point $H$ is the intersection point of $BE$, $CF$. Prove that the incenters of triangles $AGF$, $BHF$, $CHE$, $DGE$ lie on a circle. Proposed by Le Viet An (Vietnam)

Estonia Open Senior - geometry, 2008.1.2

Let $O$ be the circumcentre of triangle $ABC$. Lines $AO$ and $BC$ intersect at point $D$. Let $S$ be a point on line $BO$ such that $DS \parallel AB$ and lines $AS$ and $BC$ intersect at point $T$. Prove that if $O, D, S$ and $T$ lie on the same circle, then $ABC$ is an isosceles triangle.

2019 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an acute-angled triangle. Let $D$ and $E$ be the feet of the altitudes on the sides $BC$ or $AC$. Points $F$ and $G$ are located on the lines $AD$ and $BE$ in such a way that$ \frac{AF}{FD}=\frac{BG}{GE}$. The line passing through $C$ and $F$ intersects $BE$ at point $H$, and the line passing through $C$ and $G$ intersects $AD$ at point $I$. Prove that points $F, G, H$ and $I$ lie on a circle. (Walther Janous)

Kyiv City MO Juniors 2003+ geometry, 2017.9.5

Let $I$ be the center of the inscribed circle of $ABC$ and let $I_A$ be the center of the exscribed circle touching the side $BC$. Let $M$ be the midpoint of the side $BC$, and $N$ be the midpoint of the arc $BAC$ of the circumscribed circle of $ABC$ . The point $T$ is symmetric to the point $N$ wrt point $A$. Prove that the points $I_A,M,I,T$ lie on the same circle. (Danilo Hilko)

1991 Greece National Olympiad, 2

Given two circles $(C_1)$ and $(C_2)$ with centers $\displaystyle{O_1}$ and $O_2$ respectively, intersecting at points $A$ and $B$. Let $AC$ και $AD$ be the diameters of $(C_1)$ and $(C_2)$ respectively . Tangent line of circle $(C_1)$ at point $A$ intersects $(C_2)$ at point $M$ and tangent line of circle $(C_2)$ at point A intersects $(C_1)$ at point $N$. Let $P$ be a point on line $AB$ such that $AB=BP$. Prove that: a) Points $B,C,D$ are collinear. b) Quadrilateral $AMPN$ is cyclic.

2015 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be a triangle with $AB \neq BC$ and let $BD$ the interior bisectrix of $ \angle ABC$ with $D \in AC$ . Let $M$ be the midpoint of the arc $AC$ that contains the point $B$ in the circumcircle of the triangle $ABC$ .The circumcircle of the triangle $BDM$ intersects the segment $AB$ in $K \neq B$ . Denote by $J$ the symmetric of $A$ with respect to $K$ .If $DJ$ intersects $AM$ in $O$ then prove that $J,B,M,O$ are concyclic.

2024 Kyiv City MO Round 1, Problem 3

The circle $\gamma$ passing through the vertex $A$ of triangle $ABC$ intersects its sides $AB$ and $AC$ for the second time at points $X$ and $Y$, respectively. Also, the circle $\gamma$ intersects side $BC$ at points $D$ and $E$ so that $AD = AE$. Prove that the points $B, X, Y, C$ lie on the same circle. [i]Proposed by Mykhailo Shtandenko[/i]

Swiss NMO - geometry, 2012.10

Let $O$ be an inner point of an acute-angled triangle $ABC$. Let $A_1, B_1$ and $C_1$ be the projections of $O$ on the sides $BC, AC$ and $AB$ respectively . Let $P$ be the intersection of the perpendiculars on $B_1C_1$ and $A_1C_1$ from points$ A$ and $B$ respectilvey. Let $H$ be the projection of $P$ on $AB$. Show that points $A_1, B_1, C_1$ and $H$ lie on a circle.

Ukrainian From Tasks to Tasks - geometry, 2015.14

On the side $AB$ of the triangle $ABC$ mark the points $M$ and $N$, such that $BM = BC$ and $AN = AC$. Then on the sides $BC$ and $AC$ mark the points$ P$ and $Q$, respectively, such that $BP = BN$ and $AQ = AM$. Prove that the points $C, Q, M, N$ and $P$ lie on the same circle.

2023 Sharygin Geometry Olympiad, 1

Let $L$ be the midpoint of the minor arc $AC$ of the circumcircle of an acute-angled triangle $ABC$. A point $P$ is the projection of $B$ to the tangent at $L$ to the circumcircle. Prove that $P$, $L$, and the midpoints of sides $AB$, $BC$ are concyclic.

Croatia MO (HMO) - geometry, 2016.3

Given a cyclic quadrilateral $ABCD$ such that the tangents at points $B$ and $D$ to its circumcircle $k$ intersect at the line $AC$. The points $E$ and $F$ lie on the circle $k$ so that the lines $AC, DE$ and $BF$ parallel. Let $M$ be the intersection of the lines $BE$ and $DF$. If $P, Q$ and $R$ are the feet of the altitides of the triangle $ABC$, prove that the points $P, Q, R$ and $M$ lie on the same circle

2018 JBMO TST-Turkey, 3

Let $H$ be the orthocenter of an acute angled triangle $ABC$. Circumcircle of the triangle $ABC$ and the circle of diameter $[AH]$ intersect at point $E$, different from $A$. Let $M$ be the midpoint of the small arc $BC$ of the circumcircle of the triangle $ABC$ and let $N$ the midpoint of the large arc $BC$ of the circumcircle of the triangle $BHC$ Prove that points $E, H, M, N$ are concyclic.

2022-IMOC, G3

Let $\vartriangle ABC$ be an acute triangle. $R$ is a point on arc $BC$. Choose two points $P, Q$ on $AR$ such that $B,P,C,Q$ are concyclic. Let the second intersection of $BP$, $CP$, $BQ$, $CQ$ and the circumcircle of $\vartriangle ABC$ is $P_B$, $P_C$, $Q_B$, $Q_C$, respectively. Let the circumcenter of $\vartriangle P P_BP_C$ and $\vartriangle QQ_BQ_C$ are $O_P$ and $O_Q$, respectively. Prove that $A,O_P,O_Q,R$ are concylic. [i]proposed by andychang[/i]

1976 All Soviet Union Mathematical Olympiad, 226

Given regular $1976$-gon. The midpoints of all the sides and diagonals are marked. What is the greatest number of the marked points lying on one circumference?

2015 India PRMO, 16

$16.$ In an acute angle triangle $ABC,$ let $D$ be the foot of the altitude from $A,$ and $E$ be the midpoint of $BC.$ Let $F$ be the midpoint of $AC.$ Suppose $\angle{BAE}=40^o. $ If $\angle{DAE}=\angle{DFE},$ What is the magnitude of $\angle{ADF}$ in degrees $?$

2018 Regional Olympiad of Mexico Northwest, 3

Let $ABC$ be an acute triangle orthocenter angle $H$. Let $\omega_1$ be the circle tangent to $BC$ at $B$ and passing through $H$ and $\omega_2$ the circle tangent to $BC$ at $C$ and passing through through $H$. A line $\ell$ passing through $H$ intersects the circles $\omega_1$ and $\omega_2$ at points $D$ and $E$, respectively (with $D$ and $E$ other than $H$). Lines $BD$ and $CE$ intersect at $F$, the lines $\ell$ and $AF$ intersect at $X$ and the circles $\omega_1$ and $\omega_2$ intersect at the points $P$ and $H$. Prove that the points $A, H, P$ and $X$ are still on the same circle.

2008 Oral Moscow Geometry Olympiad, 4

A circle can be circumscribed around the quadrilateral $ABCD$. Point $P$ is the foot of the perpendicular drawn from point $A$ on line $BC$, and respectively $Q$ from $A$ on $DC$, $R$ from $D$ on $AB$ and $T$ from $D$ on $BC$ . Prove that points $P,Q,R$ and $T$ lie on the same circle. (A. Myakishev)

2010 Contests, 3

Given an acute and scalene triangle $ABC$ with $AB<AC$ and random line $(e)$ that passes throuh the center of the circumscribed circles $c(O,R)$. Line $(e)$, intersects sides $BC,AC,AB$ at points $A_1,B_1,C_1$ respectively (point $C_1$ lies on the extension of $AB$ towards $B$). Perpendicular from $A$ on line $(e)$ and $AA_1$ intersect circumscribed circle $c(O,R)$ at points $M$ and $A_2$ respectively. Prove that a) points $O,A_1,A_2, M$ are consyclic b) if $(c_2)$ is the circumcircle of triangle $(OBC_1)$ and $(c_3)$ is the circumcircle of triangle $(OCB_1)$, then circles $(c_1),(c_2)$ and $(c_3)$ have a common chord

1995 All-Russian Olympiad Regional Round, 9.7

A regular hexagon of side $5$ is cut into unit equilateral triangles by lines parallel to the sides of the hexagon. We call the vertices of these triangles knots. If more than half of all knots are marked, show that there exist five marked knots that lie on a circle.

Durer Math Competition CD 1st Round - geometry, 2010.D3

Tags: concyclic , dure , geometry
Prove that the diagonals of a quadrilateral are perpendicular to each other if and only if the midpoints of it's sides lie on a circle.