This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 38

2024 AMC 12/AHSME, 15

A triangle in the coordinate plane has vertices $A(\log_21,\log_22)$, $B(\log_23,\log_24)$, and $C(\log_27,\log_28)$. What is the area of $\triangle ABC$? $ \textbf{(A) }\log_2\frac{\sqrt3}7\qquad \textbf{(B) }\log_2\frac3{\sqrt7}\qquad \textbf{(C) }\log_2\frac7{\sqrt3}\qquad \textbf{(D) }\log_2\frac{11}{\sqrt7}\qquad \textbf{(E) }\log_2\frac{11}{\sqrt3}\qquad $

1985 IMO Shortlist, 19

For which integers $n \geq 3$ does there exist a regular $n$-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?

2022 ISI Entrance Examination, 3

Consider the parabola $C: y^{2}=4 x$ and the straight line $L: y=x+2$. Let $P$ be a variable point on $L$. Draw the two tangents from $P$ to $C$ and let $Q_{1}$ and $Q_{2}$ denote the two points of contact on $C$. Let $Q$ be the mid-point of the line segment joining $Q_{1}$ and $Q_{2}$. Find the locus of $Q$ as $P$ moves along $L$.

2019 ISI Entrance Examination, 8

Consider the following subsets of the plane:$$C_1=\Big\{(x,y)~:~x>0~,~y=\frac1x\Big\} $$ and $$C_2=\Big\{(x,y)~:~x<0~,~y=-1+\frac1x\Big\}$$ Given any two points $P=(x,y)$ and $Q=(u,v)$ of the plane, their distance $d(P,Q)$ is defined by $$d(P,Q)=\sqrt{(x-u)^2+(y-v)^2}$$ Show that there exists a unique choice of points $P_0\in C_1$ and $Q_0\in C_2$ such that $$d(P_0,Q_0)\leqslant d(P,Q)\quad\forall ~P\in C_1~\text{and}~Q\in C_2.$$

2022 USAJMO, 4

Let $ABCD$ be a rhombus, and let $K$ and $L$ be points such that $K$ lies inside the rhombus, $L$ lies outside the rhombus, and $KA = KB = LC = LD$. Prove that there exist points $X$ and $Y$ on lines $AC$ and $BD$ such that $KXLY$ is also a rhombus. [i]Proposed by Ankan Bhattacharya[/i]

Kyiv City MO Juniors Round2 2010+ geometry, 2019.7.31

The teacher drew a coordinate plane on the board and marked some points on this plane. Unfortunately, Vasya's second-grader, who was on duty, erased almost the entire drawing, except for two points $A (1, 2)$ and $B (3,1)$. Will the excellent Andriyko be able to follow these two points to construct the beginning of the coordinate system point $O (0, 0)$? Point A on the board located above and to the left of point $B$.

2019 India Regional Mathematical Olympiad, 6

Let $k$ be a positive real number. In the $X-Y$ coordinate plane, let $S$ be the set of all points of the form $(x,x^2+k)$ where $x\in\mathbb{R}$. Let $C$ be the set of all circles whose center lies in $S$, and which are tangent to $X$-axis. Find the minimum value of $k$ such that any two circles in $C$ have at least one point of intersection.

2020 Bangladesh Mathematical Olympiad National, Problem 7

$f$ is a function on the set of complex numbers such that $f(z)=1/(z*)$, where $z*$ is the complex conjugate of $z$. $S$ is the set of complex numbers $z$ such that the real part of $f(z)$ lies between $1/2020$ and $1/2018$. If $S$ is treated as a subset of the complex plane, the area of $S$ can be expressed as $m× \pi$ where $m$ is an integer. What is the value of $m$?

2004 Germany Team Selection Test, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2024 CIIM, 4

Given the points $O = (0, 0)$ and $A = (2024, -2024)$ in the plane. For any positive integer $n$, Damian draws all the points with integer coordinates $B_{i,j} = (i, j)$ with $0 \leq i, j \leq n$ and calculates the area of each triangle $OAB_{i,j}$. Let $S(n)$ denote the sum of the $(n+1)^2$ areas calculated above. Find the following limit: \[ \lim_{n \to \infty} \frac{S(n)}{n^3}. \]

1992 IMO Longlists, 7

Let $X$ be a bounded, nonempty set of points in the Cartesian plane. Let $f(X)$ be the set of all points that are at a distance of at most $1$ from some point in $X$. Let $f_n(X) = f(f(\cdots(f(X))\cdots))$ ($n$ times). Show that $f_n(X)$ becomes “more circular” as $n$ gets larger. In other words, if $r_n = \sup\{\text{radii of circles contained in } f_n(X) \}$ and $R_n = \inf \{\text{radii of circles containing } f_n(X)\}$, then show that $R_n/r_n$ gets arbitrarily close to $1$ as $n$ becomes arbitrarily large. [hide]I'm not sure that I'm posting this in a right forum. If it's in a wrong forum, please mods move it.[/hide]

2017 Tuymaada Olympiad, 8

Two points $A$ and $B$ are given in the plane. A point $X$ is called their [i]preposterous midpoint[/i] if there is a Cartesian coordinate system in the plane such that the coordinates of $A$ and $B$ in this system are non-negative, the abscissa of $X$ is the geometric mean of the abscissae of $A$ and $B$, and the ordinate of $X$ is the geometric mean of the ordinates of $A$ and $B$. Find the locus of all the [i]preposterous midpoints[/i] of $A$ and $B$. (K. Tyschu)

2020 Jozsef Wildt International Math Competition, W1

Consider the ellipsoid$$\frac{x^2}{a^2}+\frac{y^2}{a^2}+\frac{z^2}{b^2}=1$$($a$ and $b > 0$) and the ellipse $E$ which is the intersection of the ellipsoid with the plane of equation$$mx + ny + pz = 0$$where the point $P = [m, n, p]$ is a random point from the unit sphere $(m^2 + n^2 + p^2 = 1)$. Consider the random variable $A_E$ the area of the ellipse $E$. If the point $P$ is chosen with uniform distribution with respect to the area on the unit sphere, what is the expectation of $A_E$ ?

2021 Bangladeshi National Mathematical Olympiad, 11

Let $ABCD$ be a square such that $A=(0,0)$ and $B=(1,1)$. $P(\frac{2}{7},\frac{1}{4})$ is a point inside the square. An ant starts walking from $P$, touches $3$ sides of the square and comes back to the point $P$. The least possible distance traveled by the ant can be expressed as $\frac{\sqrt{a}}{b}$, where $a$ and $b$ are integers and $a$ not divisible by any square number other than $1$. What is the value of $(a+b)$?

2024 Australian Mathematical Olympiad, P7

Let $ABCD$ be a square and let $P$ be a point on side $AB$. The point $Q$ lies outside the square such that $\angle ABQ = \angle ADP$ and $\angle AQB = 90^{\circ}$. The point $R$ lies on the side $BC$ such that $\angle BAR = \angle ADQ$. Prove that the lines $AR, CQ$ and $DP$ pass through a common point.

1987 IMO Longlists, 29

Is it possible to put $1987$ points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a non-degenerate triangle with rational area? [i](IMO Problem 5)[/i] [i]Proposed by Germany, DR[/i]

2019 Jozsef Wildt International Math Competition, W. 41

For $n \in \mathbb{N}$, consider in $\mathbb{R}^3$ the regular tetrahedron with vertices $O(0, 0, 0)$, $A(n, 9n, 4n)$, $B(9n, 4n, n)$ and $C(4n, n, 9n)$. Show that the number $N$ of points $(x, y, z)$, $[x, y, z \in \mathbb{Z}]$ inside or on the boundary of the tetrahedron $OABC$ is given by$$N=\frac{343n^3}{3}+\frac{35n^2}{2}+\frac{7n}{6}+1$$

2023-24 IOQM India, 14

Let $A B C$ be a triangle in the $x y$ plane, where $B$ is at the origin $(0,0)$. Let $B C$ be produced to $D$ such that $B C: C D=1: 1, C A$ be produced to $E$ such that $C A: A E=1: 2$ and $A B$ be produced to $F$ such that $A B: B F=1: 3$. Let $G(32,24)$ be the centroid of the triangle $A B C$ and $K$ be the centroid of the triangle $D E F$. Find the length $G K$.

2023 Hong Kong Team Selection Test, Problem 2

Giiven $\Delta ABC$, $\angle CAB=75^{\circ}$ and $\angle ACB=45^{\circ}$. $BC$ is extended to $T$ so that $BC=CT$. Let $M$ be the midpoint of the segment $AT$. Find $\angle BMC$.

2004 Germany Team Selection Test, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2019 Mathematical Talent Reward Programme, SAQ: P 6

Consider a finite set of points, $\Phi$, in the $\mathbb{R}^2$, such that they follow the following properties : [list] [*] $\Phi$ doesn't contain the origin $\{(0,0)\}$ and not all points are collinear. [*] If $\alpha \in \Phi$, then $-\alpha \in \Phi$, $c\alpha \notin \Phi $ for $c\neq 1$ or $-1$ [*] If $\alpha, \ \beta$ are in $\Phi$, then the reflection of $\beta$ in the line passing through the origin and perpendicular to the line containing origin and $\alpha$ is in $\Phi$ [*] If $\alpha = (a,b) , \ \beta = (c,d)$, (both $\alpha, \ \beta \in \Phi$) then $\frac{2(ac+bd)}{c^2+d^2} \in \mathbb{Z}$ [/list] Prove that there cannot be 5 collinear points in $\Phi$

2003 IMO Shortlist, 5

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2021 Alibaba Global Math Competition, 1

In a virtually-made world, each citizen, which is assumed to be a point (i.e. without area) and labelled as $1, 2, ...$. To fight against a pandemic, these citizens are required to get vaccinated. After they get vaccinated, they need to be observed for a period of time. Now assume the location that the citizens get observe is a circumference with radius $\frac{1}{4}$ on the plane. For the safety reason, it is required for distance between $m$-th citizen and $n$-th citizen $d_{m, n}$ satisfying the following: $(m+n)d_{m, n}\geq 1$ Here what we consider is the distance on the circumference i.e. the arc length of minor arc formed by two points. Then (a) Choose one of the following which fits the situation in reality. A. The location for observation can mostly have $8$ citizens. B. The location for observation can have the upper limit on the number of citizens which is larger than $8$. C. The location for observation can have any number of citizens. (b) Prove your answer in (a).

1987 IMO, 2

Let $n\ge3$ be an integer. Prove that there is a set of $n$ points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with rational area.

2004 IMO Shortlist, 7

Let $p$ be an odd prime and $n$ a positive integer. In the coordinate plane, eight distinct points with integer coordinates lie on a circle with diameter of length $p^{n}$. Prove that there exists a triangle with vertices at three of the given points such that the squares of its side lengths are integers divisible by $p^{n+1}$. [i]Proposed by Alexander Ivanov, Bulgaria[/i]