This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 111

2014 Contests, 2

Let $ABCD$ be an inscribed quadrilateral in a circle $c(O,R)$ (of circle $O$ and radius $R$). With centers the vertices $A,B,C,D$, we consider the circles $C_{A},C_{B},C_{C},C_{D}$ respectively, that do not intersect to each other . Circle $C_{A}$ intersects the sides of the quadrilateral at points $A_{1} , A_{2}$ , circle $C_{B}$ intersects the sides of the quadrilateral at points $B_{1} , B_{2}$ , circle $C_{C}$ at points $C_{1} , C_{2}$ and circle $C_{D}$ at points $C_{1} , C_{2}$ . Prove that the quadrilateral defined by lines $A_{1}A_{2} , B_{1}B_{2} , C_{1}C_{2} , D_{1}D_{2}$ is cyclic.

2021 ELMO Problems, 1

In $\triangle ABC$, points $P$ and $Q$ lie on sides $AB$ and $AC$, respectively, such that the circumcircle of $\triangle APQ$ is tangent to $BC$ at $D$. Let $E$ lie on side $BC$ such that $BD = EC$. Line $DP$ intersects the circumcircle of $\triangle CDQ$ again at $X$, and line $DQ$ intersects the circumcircle of $\triangle BDP$ again at $Y$. Prove that $D$, $E$, $X$, and $Y$ are concyclic.

1988 All Soviet Union Mathematical Olympiad, 467

The quadrilateral $ABCD$ is inscribed in a fixed circle. It has $AB$ parallel to $CD$ and the length $AC$ is fixed, but it is otherwise allowed to vary. If $h$ is the distance between the midpoints of $AC$ and $BD$ and $k$ is the distance between the midpoints of $AB$ and $CD$, show that the ratio $h/k$ remains constant.

1967 IMO Longlists, 20

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.

1967 Czech and Slovak Olympiad III A, 3

Consider a table of cyclic permutations ($n\ge2$) \[ \begin{matrix} 1, & 2, & \ldots, & n-1, & n \\ 2, & 3, & \ldots, & n, & 1, \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n, & 1, & \ldots, & n-2, & n-1. \end{matrix} \] Then multiply each number of the first row by that number of the $k$-th row that is in the same column. Sum all these products and denote $s_k$ the result (e.g. $s_2=1\cdot2+2\cdot3+\cdots+(n-1)\cdot n+n\cdot1$). a) Find a recursive relation for $s_k$ in terms of $s_{k-1}$ and determine the explicit formula for $s_k$. b) Determine both an index $k$ and the value of $s_k$ such that the sum $s_k$ is minimal.

Kharkiv City MO Seniors - geometry, 2017.11.5

The quadrilateral $ABCD$ is inscribed in the circle $\omega$. Lines $AD$ and $BC$ intersect at point $E$. Points $M$ and $N$ are selected on segments $AD$ and $BC$, respectively, so that $AM: MD = BN: NC$. The circumscribed circle of the triangle $EMN$ intersects the circle $\omega$ at points $X$ and $Y$. Prove that the lines $AB, CD$ and $XY$ intersect at the same point or are parallel.

2012 Ukraine Team Selection Test, 2

$E$ is the intersection point of the diagonals of the cyclic quadrilateral, $ABCD, F$ is the intersection point of the lines $AB$ and $CD, M$ is the midpoint of the side $AB$, and $N$ is the midpoint of the side $CD$. The circles circumscribed around the triangles $ABE$ and $ACN$ intersect for the second time at point $K$. Prove that the points $F, K, M$ and $N$ lie on one circle.

2014 Saudi Arabia GMO TST, 1

Let $ABC$ be a triangle with $\angle A < \angle B \le \angle C$, $M$ and $N$ the midpoints of sides $CA$ and $AB$, respectively, and $P$ and $Q$ the projections of $B$ and $C$ on the medians $CN$ and $BM$, respectively. Prove that the quadrilateral $MNPQ$ is cyclic.

2003 Portugal MO, 4

In a village there are only $10$ houses, arranged in a circle of a radius $r$ meters. Each has is the same distance from each of the two closest houses. Every year on Sunday of Pascoa, the village priest makes the Easter visit, leaving the parish house (point $A$) and following the path described in Figure 1. This year the priest decided to take the path represented in the Figure 2. Prove that this year the priest will walk another $10r$ meters. [img]https://cdn.artofproblemsolving.com/attachments/a/9/a6315f4a63f28741ca6fbc75c19a421eb1da06.png[/img]

1955 Moscow Mathematical Olympiad, 296

There are four points $A, B, C, D$ on a circle. Circles are drawn through each pair of neighboring points. Denote the intersection points of neighboring circles by $A_1, B_1, C_1, D_1$. (Some of these points may coincide with previously given ones.) Prove that points $A_1, B_1, C_1, D_1$ lie on one circle.

Estonia Open Senior - geometry, 1994.2.2

The two sides $BC$ and $CD$ of an inscribed quadrangle $ABCD$ are of equal length. Prove that the area of this quadrangle is equal to $S =\frac12 \cdot AC^2 \cdot \sin \angle A$

2013 Ukraine Team Selection Test, 6

Six different points $A, B, C, D, E, F$ are marked on the plane, no four of them lie on one circle and no two segments with ends at these points lie on parallel lines. Let $P, Q,R$ be the points of intersection of the perpendicular bisectors to pairs of segments $(AD, BE)$, $(BE, CF)$ ,$(CF, DA)$ respectively, and $P', Q' ,R'$ are points the intersection of the perpendicular bisectors to the pairs of segments $(AE, BD)$, $(BF, CE)$ , $(CA, DF)$ respectively. Show that $P \ne P', Q \ne Q', R \ne R'$, and prove that the lines $PP', QQ'$ and $RR'$ intersect at one point or are parallel.

2022 Durer Math Competition Finals, 4

$ABCD$ is a cyclic quadrilateral whose diagonals are perpendicular to each other. Let $O$ denote the centre of its circumcircle and $E$ the intersection of the diagonals. $J$ and $K$ denote the perpendicular projections of $E$ on the sides $AB$ and $BC$ . Let $F , G$ and $H$ be the midpoint line segments. Show that lines $GJ$ , $FB$ and $HK$ either pass through the same point or are parallel to each other.

2010 Dutch BxMO TST, 4

The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.

2004 Abels Math Contest (Norwegian MO), 3

Tags: area , cyclic , geometry
In a quadrilateral $ABCD$ with $\angle A = 60^o, \angle B = 90^o, \angle C = 120^o$, the point $M$ of intersection of the diagonals satisfies $BM = 1$ and $MD = 2$. (a) Prove that the vertices of $ABCD$ lie on a circle and find the radius of that circle. (b) Find the area of quadrilateral $ABCD$.

1967 IMO Shortlist, 2

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.

Cono Sur Shortlist - geometry, 2009.G2

The trapezoid $ABCD$, of bases $AB$ and $CD$, is inscribed in a circumference $\Gamma$. Let $X$ a variable point of the arc $AB$ of $\Gamma$ that does not contain $C$ or $D$. We denote $Y$ to the point of intersection of $AB$ and $DX$, and let Z be the point of the segment $CX$ such that $\frac{XZ}{XC}=\frac{AY}{AB}$ . Prove that the measure of $\angle AZX$ does not depend on the choice of $X.$

Novosibirsk Oral Geo Oly IX, 2020.7

Tags: cyclic , tangent , geometry
The quadrilateral $ABCD$ is known to be inscribed in a circle, and that there is a circle with center on side $AD$ tangent to the other three sides. Prove that $AD = AB + CD$.

1964 German National Olympiad, 6

Which of the following four statements are true and which are false? a) If a polygon inscribed in a circle is equilateral, then it is also equiangular. b) If a polygon inscribed in a circle is equiangular, then it is also equilateral. c) If a polygon circumscribed to a circle is equilateral, then it is also equiangular. d) If a polygon circumscribed to a circle is equiangular, then it is also equilateral.

Croatia MO (HMO) - geometry, 2019.7

On the side $AB$ of the cyclic quadrilateral $ABCD$ there is a point $X$ such that diagonal $AC$ bisects the segment $DX$, and the diagonal $BD$ bisects the segment $CX$. What is the smallest possible ratio $|AB | : |CD|$ in such a quadrilateral ?

Kyiv City MO Juniors 2003+ geometry, 2011.89.4

Let $ABCD$ be an inscribed quadrilateral. Denote the midpoints of the sides $AB, BC, CD$ and $DA$ through $M, L, N$ and $K$, respectively. It turned out that $\angle BM N = \angle MNC$. Prove that: i) $\angle DKL = \angle CLK$. ii) in the quadrilateral $ABCD$ there is a pair of parallel sides.

1996 Swedish Mathematical Competition, 4

The angles at $A,B,C,D,E$ of a pentagon $ABCDE$ inscribed in a circle form an increasing sequence. Show that the angle at $C$ is greater than $\pi/2$, and that this lower bound cannot be improved.

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.

2020 Novosibirsk Oral Olympiad in Geometry, 7

Tags: geometry , cyclic , tangent
The quadrilateral $ABCD$ is known to be inscribed in a circle, and that there is a circle with center on side $AD$ tangent to the other three sides. Prove that $AD = AB + CD$.

2010 Balkan MO Shortlist, G2

Consider a cyclic quadrilateral such that the midpoints of its sides form another cyclic quadrilateral. Prove that the area of the smaller circle is less than or equal to half the area of the bigger circle