This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 121

2012 Lusophon Mathematical Olympiad, 6

A quadrilateral $ABCD$ is inscribed in a circle of center $O$. It is known that the diagonals $AC$ and $BD$ are perpendicular. On each side we build semicircles, externally, as shown in the figure. a) Show that the triangles $AOB$ and $COD$ have the equal areas. b) If $AC=8$ cm and $BD= 6$ cm, determine the area of the shaded region.

2011 Bundeswettbewerb Mathematik, 3

The diagonals of a convex pentagon divide each of its interior angles into three equal parts. Does it follow that the pentagon is regular?

1975 All Soviet Union Mathematical Olympiad, 209

Denote the midpoints of the convex hexagon $A_1A_2A_3A_4A_5A_6$ diagonals $A_6A_2$, $A_1A_3$, $A_2A_4$, $A_3A_5$, $A_4A_6$, $A_5A_1$ as $B_1, B_2, B_3, B_4, B_5, B_6$ respectively. Prove that if the hexagon $B_1B_2B_3B_4B_5B_6$ is convex, than its area equals to the quarter of the initial hexagon.

2016 Sharygin Geometry Olympiad, 7

Diagonals of a quadrilateral $ABCD$ are equal and meet at point $O$. The perpendicular bisectors to segments $AB$ and $CD$ meet at point $P$, and the perpendicular bisectors to $BC$ and $AD$ meet at point $Q$. Find angle $\angle POQ$. by A.Zaslavsky

2002 Junior Balkan Team Selection Tests - Romania, 2

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ meet at $O$. Let $m$ be the measure of the acute angle formed by these diagonals. A variable angle $xOy$ of measure $m$ intersects the quadrilateral by a convex quadrilateral of constant area. Prove that $ABCD$ is a square.

1994 Czech And Slovak Olympiad IIIA, 3

A convex $1994$-gon $M$ is given in the plane. A closed polygonal line consists of $997$ of its diagonals. Every vertex is adjacent to exactly one diagonal. Each diagonal divides $M$ into two sides, and the smaller of the numbers of edges on the two sides of $M$ is defined to be the length of the diagonal. Is it posible to have (a) $991$ diagonals of length $3$ and $6$ of length $2$? (b) $985$ diagonals of length $6, 4$ of length $8$, and $8$ of length $3$?

2009 Balkan MO Shortlist, G3

Let $ABCD$ be a convex quadrilateral, and $P$ be a point in its interior. The projections of $P$ on the sides of the quadrilateral lie on a circle with center $O$. Show that $O$ lies on the line through the midpoints of $AC$ and $BD$.

1955 Moscow Mathematical Olympiad, 294

a) A square table with $49$ small squares is filled with numbers $1$ to $7$ so that in each row and in each column all numbers from $1$ to $7$ are present. Let the table be symmetric through the main diagonal. Prove that on this diagonal all the numbers $1, 2, 3, . . . , 7$ are present. b) A square table with $n^2$ small squares is filled with numbers $1$ to $n$ so that in each row and in each column all numbers from $1$ to $n$ are present. Let $n$ be odd and the table be symmetric through the main diagonal. Prove that on this diagonal all the numbers $1, 2, 3, . . . , n$ are present.

2015 Oral Moscow Geometry Olympiad, 1

Two trapezoid angles and diagonals are respectively equal. Is it true that such are the trapezoid equal?

2014 Oral Moscow Geometry Olympiad, 3

Is there a convex pentagon in which each diagonal is equal to a side?

2011 Sharygin Geometry Olympiad, 10

The diagonals of trapezoid $ABCD$ meet at point $O$. Point $M$ of lateral side $CD$ and points $P, Q$ of bases $BC$ and $AD$ are such that segments $MP$ and $MQ$ are parallel to the diagonals of the trapezoid. Prove that line $PQ$ passes through point $O$.

2008 Switzerland - Final Round, 8

Let $ABCDEF$ be a convex hexagon inscribed in a circle . Prove that the diagonals $AD, BE$ and $CF$ intersect at one point if and only if $$\frac{AB}{BC} \cdot \frac{CD}{DE}\cdot \frac{EF}{FA}=1$$

2016 Oral Moscow Geometry Olympiad, 1

Angles are equal in a hexagon, three main diagonals are equal and the other six diagonals are also equal. Is it true that it has equal sides?

1995 Czech and Slovak Match, 5

The diagonals of a convex quadrilateral $ABCD$ are orthogonal and intersect at point $E$. Prove that the reflections of $E$ in the sides of quadrilateral $ABCD$ lie on a circle.

1998 Tournament Of Towns, 5

A square is divided into $25$ small squares. We draw diagonals of some of the small squares so that no two diagonals share a common point (not even a common endpoint). What is the largest possible number of diagonals that we can draw? (I Rubanov)

2014 Contests, 3

Let $ABCD$ be a convex quadrilateral with perpendicular diagonals. If $AB = 20, BC = 70$ and $CD = 90$, then what is the value of $DA$?

2012 Estonia Team Selection Test, 3

In a cyclic quadrilateral $ABCD$ we have $|AD| > |BC|$ and the vertices $C$ and $D$ lie on the shorter arc $AB$ of the circumcircle. Rays $AD$ and $BC$ intersect at point $K$, diagonals $AC$ and $BD$ intersect at point $P$. Line $KP$ intersects the side $AB$ at point $L$. Prove that $\angle ALK$ is acute.

2018 Sharygin Geometry Olympiad, 6

Let $ABCD$ be a circumscribed quadrilateral. Prove that the common point of the diagonals, the incenter of triangle $ABC$ and the centre of excircle of triangle $CDA$ touching the side $AC$ are collinear.

2014 Contests, 3

Is there a convex pentagon in which each diagonal is equal to a side?

1993 Romania Team Selection Test, 3

Suppose that each of the diagonals $AD,BE,CF$ divides the hexagon $ABCDEF$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?

2009 Tournament Of Towns, 1

In a convex $2009$-gon, all diagonals are drawn. A line intersects the $2009$-gon but does not pass through any of its vertices. Prove that the line intersects an even number of diagonals.

1970 All Soviet Union Mathematical Olympiad, 131

How many sides of the convex polygon can equal its longest diagonal?

2008 Hanoi Open Mathematics Competitions, 8

The sides of a rhombus have length $a$ and the area is $S$. What is the length of the shorter diagonal?

2006 Sharygin Geometry Olympiad, 8.5

Is there a convex polygon with each side equal to some diagonal, and each diagonal equal to some side?

2015 Middle European Mathematical Olympiad, 2

Let $n\ge 3$ be an integer. An [i]inner diagonal[/i] of a [i]simple $n$-gon[/i] is a diagonal that is contained in the $n$-gon. Denote by $D(P)$ the number of all inner diagonals of a simple $n$-gon $P$ and by $D(n)$ the least possible value of $D(Q)$, where $Q$ is a simple $n$-gon. Prove that no two inner diagonals of $P$ intersect (except possibly at a common endpoint) if and only if $D(P)=D(n)$. [i]Remark:[/i] A simple $n$-gon is a non-self-intersecting polygon with $n$ vertices. A polygon is not necessarily convex.