This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 361

2012 Switzerland - Final Round, 3

The circles $k_1$ and $k_2$ intersect at points $D$ and $P$. The common tangent of the two circles on the side of $D$ touches $k_1$ at $A$ and $k_2$ at $B$. The straight line $AD$ intersects $k_2$ for a second time at $C$. Let $M$ be the center of the segment $BC$. Show that $ \angle DPM = \angle BDC$ .

Durer Math Competition CD Finals - geometry, 2019.D3

a) Does there exist a quadrilateral with (both of) the following properties: three of its edges are of the same length, but the fourth one is different, and three of its angles are equal, but the fourth one is different? b) Does there exist a pentagon with (both of) the following properties: four of its edges are of the same length, but the fifth one is different, and four of its angles are equal, but the fifth one is different?

1989 All Soviet Union Mathematical Olympiad, 492

$ABC$ is a triangle. $A' , B' , C'$ are points on the segments $BC, CA, AB$ respectively. $\angle B' A' C' = \angle A$ , $\frac{AC'}{C'B} = \frac{BA' }{A' C} = \frac{CB'}{B'A}$. Show that $ABC$ and $A'B'C'$ are similar.

Swiss NMO - geometry, 2013.7

Let $O$ be the center of the circle of the triangle $ABC$ with $AB \ne AC$. Furthermore, let $S$ and $T$ be points on the rays $AB$ and $AC$, such that $\angle ASO = \angle ACO$ and $\angle ATO = \angle ABO$. Show that $ST$ bisects the segment $BC$.

2021 Portugal MO, 2

Let $ABC$ be a triangle such that $AB = AC$. Let $D$ be a point in $[BC]$ and $E$ a point in $[AD]$ such that $\angle BE D = \angle BAC = 2 \angle DEC$. Shows that $DB = 2CD$. [img]https://cdn.artofproblemsolving.com/attachments/d/5/677e19d8e68a89134e17a4ab6051e41f283486.png[/img]

2019 Regional Olympiad of Mexico Center Zone, 3

Let $ABC$ be an acute triangle and $D$ a point on the side $BC$ such that $\angle BAD = \angle DAC$. The circumcircles of the triangles $ABD$ and $ACD$ intersect the segments $AC$ and $AB$ at $E$ and $F$, respectively. The internal bisectors of $\angle BDF$ and $\angle CDE$ intersect the sides $AB$ and $AC$ at $P$ and $Q$, respectively. Points $X$ and $Y$ are chosen on the side $BC$ such that $PX$ is parallel to $AC$ and $QY$ is parallel to $AB$. Finally, let $Z$ be the point of intersection of $BE$ and $CF$. Prove that $ZX = ZY$.

2018 NZMOC Camp Selection Problems, 4

Let $P$ be a point inside triangle $ABC$ such that $\angle CPA = 90^o$ and $\angle CBP = \angle CAP$. Prove that $\angle P XY = 90^o$, where $X$ and $Y$ are the midpoints of $AB$ and $AC$ respectively.

2016 Saudi Arabia IMO TST, 2

Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$. Tran Quang Hung

2021 Sharygin Geometry Olympiad, 9.6

The diagonals of trapezoid $ABCD$ ($BC\parallel AD$) meet at point $O$. Points $M$ and $N$ lie on the segments $BC$ and $AD$ respectively. The tangent to the circle $AMC$ at $C$ meets the ray $NB$ at point $P$; the tangent to the circle $BND$ at $D$ meets the ray $MA$ at point $R$. Prove that $\angle BOP =\angle AOR$.

Kharkiv City MO Seniors - geometry, 2014.10.4

Let $ABCD$ be a square. The points $N$ and $P$ are chosen on the sides $AB$ and $AD$ respectively, such that $NP=NC$. The point $Q$ on the segment $AN$ is such that that $\angle QPN=\angle NCB$. Prove that $\angle BCQ=\frac{1}{2}\angle AQP$.

2022 Sharygin Geometry Olympiad, 10.3

A line meets a segment $AB$ at point $C$. Which is the maximal number of points $X$ of this line such that one of angles $AXC$ and $BXC$ is equlal to a half of the second one?

2024 Czech and Slovak Olympiad III A, 2

Let the interior point $P$ of the convex quadrilateral $ABCD$ be such that $$|\angle PAD| = |\angle ADP| = |\angle CBP| = |\angle PCB| = |\angle CPD|.$$ Let $O$ be the center of the circumcircle of the triangle $CPD$. Prove that $|OA| = |OB|$.

Kyiv City MO Juniors Round2 2010+ geometry, 2020.8.2

Given a convex quadrilateral $ABCD$, in which $\angle CBD = 90^o$, $\angle BCD =\angle CAD$ and $AD= 2BC$. Prove that $CA =CD$. (Anton Trygub)

2021 SAFEST Olympiad, 4

Let $ABC$ be a triangle with $AB > AC$. Let $D$ be a point on the side $AB$ such that $DB = DC$ and let $M$ be the midpoint of $AC$. The line parallel to $BC$ passing through $D$ intersects the line $BM$ in $K$. Show that $\angle KCD = \angle DAC.$

2012 Denmark MO - Mohr Contest, 5

In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.

2019 Saudi Arabia JBMO TST, 3

Consider a triangle $ABC$ and let $M$ be the midpoint of the side $BC$. Suppose $\angle MAC = \angle ABC$ and $\angle BAM = 105^o$. Find the measure of $\angle ABC$.

2019 Estonia Team Selection Test, 7

An acute-angled triangle $ABC$ has two altitudes $BE$ and $CF$. The circle with diameter $AC$ intersects the segment $BE$ at point $P$. A circle with diameter $AB$ intersects the segment $CF$ at point $Q$ and the extension of this altitude at point $Q'$. Prove that $\angle PQ'Q = \angle PQB$.

1998 Tournament Of Towns, 2

$ABCD$ is a parallelogram. A point $M$ is found on the side $AB$ or its extension such that $\angle MAD = \angle AMO$ where $O$ is the intersection point of the diagonals of the parallelogram. Prove that $MD = MG$. (M Smurov)

2009 IMAR Test, 3

Consider a convex quadrilateral $ABCD$ with $AB=CB$ and $\angle ABC +2 \angle CDA = \pi$ and let $E$ be the midpoint of $AC$. Show that $\angle CDE =\angle BDA$. Paolo Leonetti

2020 Ukrainian Geometry Olympiad - April, 5

Given a convex pentagon $ABCDE$, with $\angle BAC = \angle ABE = \angle DEA - 90^o$, $\angle BCA = \angle ADE$ and also $BC = ED$. Prove that $BCDE$ is parallelogram.

2006 Cuba MO, 9

In the cyclic quadrilateral $ABCD$, the diagonals $AC$ and $BD$ intersect at $P$. Let $O$ be the center of the circumcircle $ABCD$, and $E$ a point of the extension of $OC$ beyond $C$. A parallel line to $CD$ is drawn through $E$ that cuts the extension of $OD$ beyonf $D$ at $F$. Let $Q$ be a point interior to $ABCD$, such that $\angle AFQ = \angle BEQ$ and $\angle FAQ = \angle EBQ$. Prove that $PQ \perp CD$.

1988 Tournament Of Towns, (189) 2

A point $M$ is chosen inside the square $ABCD$ in such a way that $\angle MAC = \angle MCD = x$ . Find $\angle ABM$.

2010 Saudi Arabia IMO TST, 2

Points $M$ and $N$ are considered in the interior of triangle $ABC$ such that $\angle MAB = \angle NAC$ and $\angle MBA = \angle NBC$. Prove that $$\frac{AM \cdot AN}{AB \cdot AC}+ \frac{BM\cdot BN}{BA \cdot BC}+ \frac{CM \cdot CN }{CA \cdot CB}=1$$

2018 Yasinsky Geometry Olympiad, 5

The inscribed circle of the triangle $ABC$ touches its sides $AB, BC, CA$, at points $K,N, M$ respectively. It is known that $\angle ANM = \angle CKM$. Prove that the triangle $ABC$ is isosceles. (Vyacheslav Yasinsky)

Swiss NMO - geometry, 2013.3

Let $ABCD$ be a cyclic quadrilateral with $\angle ADC = \angle DBA$. Furthermore, let $E$ be the projection of $A$ on $BD$. Show that $BC = DE - BE$ .