This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 67

1953 Moscow Mathematical Olympiad, 242

Let $A$ be a vertex of a regular star-shaped pentagon, the angle at $A$ being less than $180^o$ and the broken line $AA_1BB_1CC_1DD_1EE_1$ being its contour. Lines $AB$ and $DE$ meet at $F$. Prove that polygon $ABB_1CC_1DED_1$ has the same area as the quadrilateral $AD_1EF$. Note: A regular star pentagon is a figure formed along the diagonals of a regular pentagon.

1989 Tournament Of Towns, (232) 6

A regular hexagon is cut up into $N$ parallelograms of equal area. Prove that $N$ is divisible by three. (V. Prasolov, I. Sharygin, Moscow)

2021 Czech-Polish-Slovak Junior Match, 1

Consider a trapezoid $ABCD$ with bases $AB$ and $CD$ satisfying $| AB | > | CD |$. Let $M$ be the midpoint of $AB$. Let the point $P$ lie inside $ABCD$ such that $| AD | = | PC |$ and $| BC | = | PD |$. Prove that if $| \angle CMD | = 90^o$, then the quadrilaterals $AMPD$ and $BMPC$ have the same area.

2013 Dutch BxMO/EGMO TST, 1

In quadrilateral $ABCD$ the sides $AB$ and $CD$ are parallel. Let $M$ be the midpoint of diagonal $AC$. Suppose that triangles $ABM$ and $ACD$ have equal area. Prove that $DM // BC$.

Denmark (Mohr) - geometry, 1994.5

In a right-angled and isosceles triangle, the two catheti are both length $1$. Find the length of the shortest line segment dividing the triangle into two figures with the same area, and specify the location of this line segment

Ukrainian TYM Qualifying - geometry, 2015.18

Is it possible to divide a circle by three chords, different from diameters, into several equal parts?

1976 Bundeswettbewerb Mathematik, 2

Two congruent squares $Q$ and $Q'$ are given in the plane. Show that they can be divided into parts $T_1, T_2, \ldots , T_n$ and $T'_1 , T'_2 , \ldots , T'_n$, respectively, such that $T'_i$ is the image of $T_i$ under a translation for $i=1,2, \ldots, n.$

1987 Swedish Mathematical Competition, 2

A circle of radius $R$ is divided into two parts of equal area by an arc of another circle. Prove that the length of this arc is greater than $2R$.

1967 Dutch Mathematical Olympiad, 1

In this exercise we only consider convex quadrilaterals. (a) For such a quadrilateral $ABCD$, determine the set of points $P$ contained within that quadrilateral for which $PA$ and $PC$ divide the quadrilateral into two pieces of equal areas. (b) Prove that there is a point $P$ inside such a quadrilateral, such that the triangles $PAB$ and $PCD$ have equal areas, as well as the triangles $PBC$ and $PAD$. (c) Find out which quadrilaterals $ABCD$ contains a point $P$, so that the triangles $PAB$, $PBC$, $PCD$ and $PDA$ have equal areas.

2007 Swedish Mathematical Competition, 6

In the plane, a triangle is given. Determine all points $P$ in the plane such that each line through $P$ that divides the triangle into two parts with the same area must pass through one of the vertices of the triangle.

2013 APMO, 1

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.

2014 Belarusian National Olympiad, 6

Points $C_1, A_1$ and $B_1$ are marked on the sides $AB, BC$ and $CA$ of a triangle $ABC$ so that the segments $AA_1, BB_1$, and $CC_1$ are concurrent (see the fig.). It is known that the area of the white part of the triangle $ABC$ is equal to the area of its black part. Prove that at least one of the segments $AA_1, BB_1, CC_1$ is a median of the triangle $ABC$. [img]https://1.bp.blogspot.com/-nVVhqdRdf0s/X-WVmt_gyqI/AAAAAAAAM40/943sCRGyCPwT-vqIilTCtXOXHByRLIvPwCLcBGAsYHQ/s0/2014%2Bbelarus%2B11.6.png[/img]

Estonia Open Junior - geometry, 2002.1.4

Consider a point $M$ inside triangle $ABC$ such that triangles $ABM, BCM$ and $CAM$ have equal areas. Prove that $M$ is the intersection point of the medians of triangle $ABC$.

2013 Brazil Team Selection Test, 1

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.

2022 Sharygin Geometry Olympiad, 8.4

Let $ABCD$ be a cyclic quadrilateral, $O$ be its circumcenter, $P$ be a common points of its diagonals, and $M , N$ be the midpoints of $AB$ and $CD$ respectively. A circle $OPM$ meets for the second time segments $AP$ and $BP$ at points $A_1$ and $B_1$ respectively and a circle $OPN$ meets for the second time segments $CP$ and $DP$ at points $C_1$ and $D_1$ respectively. Prove that the areas of quadrilaterals $AA_1B_1B$ and $CC_1D_1D$ are equal.

1994 Denmark MO - Mohr Contest, 5

In a right-angled and isosceles triangle, the two catheti are both length $1$. Find the length of the shortest line segment dividing the triangle into two figures with the same area, and specify the location of this line segment

2015 Singapore Junior Math Olympiad, 2

In a convex hexagon $ABCDEF, AB$ is parallel to $DE, BC$ is parallel to $EF$ and $CD$ is parallel to $FA$. Prove that the triangles $ACE$ and $BDF$ have the same area.

Swiss NMO - geometry, 2008.1

Let $ABC$ be a triangle with $\angle BAC \ne 45^o$ and $\angle ABC \ne 135^o$. Let $P$ be the point on the line $AB$ with $\angle CPB = 45^o$. Let $O_1$ and $O_2$ be the centers of the circumcircles of the triangles $ACP$ and $BCP$ respectively. Show that the area of the square $CO_1P O_2$ is equal to the area of the triangle $ABC$.

2016 Portugal MO, 3

Let $[ABC]$ be an equilateral triangle on the side $1$. Determine the length of the smallest segment $[DE]$, where $D$ and $E$ are on the sides of the triangle, which divides $[ABC]$ into two figures with equal area.

2010 Saudi Arabia BMO TST, 2

Consider a triangle $ABC$ and a point $P$ in its interior. Lines $PA$, $PB$, $PC$ intersect $BC$, $CA$, $AB$ at $A', B', C'$ , respectively. Prove that $$\frac{BA'}{BC}+ \frac{CB'}{CA}+ \frac{AC'}{AB}= \frac32$$ if and only if at least two of the triangles $PAB$, $PBC$, $PCA$ have the same area.

2010 Bosnia and Herzegovina Junior BMO TST, 3

Points $M$ and $N$ are given on sides $AD$ and $BC$ of rhombus $ABCD$, respectively. Line $MC$ intersects line $BD$ in point $T$, line $MN$ intersects line $BD$ in point $U$, line $CU$ intersects line $AB$ in point $Q$ and line $QT$ intersects line $CD$ in $P$. Prove that triangles $QCP$ and $MCN$ have equal area

1994 Czech And Slovak Olympiad IIIA, 5

In an acute-angled triangle $ABC$, the altitudes $AA_1,BB_1,CC_1$ intersect at point $V$. If the triangles $AC_1V, BA_1V, CB_1V$ have the same area, does it follow that the triangle $ABC$ is equilateral?

2004 Estonia National Olympiad, 1

Inside a circle, point $K$ is taken such that the ray drawn from $K$ through the centre $O$ of the circle and the chord perpendicular to this ray passing through $K$ divide the circle into three pieces with equal area. Let $L$ be one of the endpoints of the chord mentioned. Does the inequality $\angle KOL < 75^o$ hold?

Estonia Open Senior - geometry, 2000.1.3

In the plane, the segments $AB$ and $CD$ are given, while the lines $AB$ and $CD$ intersect. Prove that the set of all points $P$ in the plane such that triangles $ABP$ and $CDP$ have equal areas , form two lines intersecting at the intersection of the lines $AB$ and $CD$.

Estonia Open Junior - geometry, 2007.1.2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.