This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 67

Denmark (Mohr) - geometry, 1994.5

In a right-angled and isosceles triangle, the two catheti are both length $1$. Find the length of the shortest line segment dividing the triangle into two figures with the same area, and specify the location of this line segment

2013 Dutch BxMO/EGMO TST, 1

In quadrilateral $ABCD$ the sides $AB$ and $CD$ are parallel. Let $M$ be the midpoint of diagonal $AC$. Suppose that triangles $ABM$ and $ACD$ have equal area. Prove that $DM // BC$.

Ukrainian TYM Qualifying - geometry, 2015.18

Is it possible to divide a circle by three chords, different from diameters, into several equal parts?

1984 Tournament Of Towns, (075) T1

In convex hexagon $ABCDEF, AB$ is parallel to $CF, CD$ is parallel to $BE$ and $EF$ is parallel to $AD$. Prove that the areas of triangles $ACE$ and $BDF$ are equal .

2007 Estonia Math Open Junior Contests, 2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

1994 Czech And Slovak Olympiad IIIA, 5

In an acute-angled triangle $ABC$, the altitudes $AA_1,BB_1,CC_1$ intersect at point $V$. If the triangles $AC_1V, BA_1V, CB_1V$ have the same area, does it follow that the triangle $ABC$ is equilateral?

Indonesia MO Shortlist - geometry, g9

Given triangle $ABC$. Let $A_1B_1$, $A_2B_2$,$ ...$, $A_{2008}B_{2008}$ be $2008$ lines parallel to $AB$ which divide triangle $ABC$ into $2009$ equal areas. Calculate the value of $$ \left\lfloor \frac{A_1B_1}{2A_2B_2} + \frac{A_1B_1}{2A_3B_3} + ... + \frac{A_1B_1}{2A_{2008}B_{2008}} \right\rfloor$$

2021 Israel National Olympiad, P7

Triangle $ABC$ is given. The circle $\omega$ with center $I$ is tangent at points $D,E,F$ to segments $BC,AC,AB$ respectively. When $ABC$ is rotated $180$ degrees about point $I$, triangle $A'B'C'$ results. Lines $AD, B'C'$ meet at $U$, lines $BE, A'C'$ meet at $V$, and lines $CF, A'B'$ meet at $W$. Line $BC$ meets $A'C', A'B'$ at points $D_1, D_2$ respectively. Line $AC$ meets $A'B', B'C'$ at $E_1, E_2$ respectively. Line $AB$ meets $B'C', A'C'$ at $F_1,F_2$ respectively. Six (not necessarily convex) quadrilaterals were colored orange: \[AUIF_2 , C'FIF_2 , BVID_1 , A'DID_2 , CWIE_1 , B'EIE_2\] Six other quadrilaterals were colored green: \[AUIE_2 , C'FIF_1 , BVIF_2 , A'DID_1 , CWID_2 , B'EIE_1\] Prove that the sum of the green areas equals the sum of the orange areas.

2017 Regional Olympiad of Mexico West, 4

Let $\vartriangle ABC$ be a triangle. Determine all points $P$ in the plane such that the triangles $\vartriangle ABP$, $\vartriangle ACP$ and $\vartriangle BCP$ all have the same area.

2021 Czech-Polish-Slovak Junior Match, 1

Consider a trapezoid $ABCD$ with bases $AB$ and $CD$ satisfying $| AB | > | CD |$. Let $M$ be the midpoint of $AB$. Let the point $P$ lie inside $ABCD$ such that $| AD | = | PC |$ and $| BC | = | PD |$. Prove that if $| \angle CMD | = 90^o$, then the quadrilaterals $AMPD$ and $BMPC$ have the same area.

2020 Yasinsky Geometry Olympiad, 3

A trapezoid $ABCD$ with bases $BC$ and $AD$ is given. The points $K$ and $L$ are chosen on the sides $AB$ and $CD$, respectively, so that $KL \parallel AD$. It turned out that the areas of the quadrilaterals $AKLD$ and $KBCL$ are equal. Find the length $KL$ if $BC = 3, AD = 5$.

2022 Sharygin Geometry Olympiad, 8.4

Let $ABCD$ be a cyclic quadrilateral, $O$ be its circumcenter, $P$ be a common points of its diagonals, and $M , N$ be the midpoints of $AB$ and $CD$ respectively. A circle $OPM$ meets for the second time segments $AP$ and $BP$ at points $A_1$ and $B_1$ respectively and a circle $OPN$ meets for the second time segments $CP$ and $DP$ at points $C_1$ and $D_1$ respectively. Prove that the areas of quadrilaterals $AA_1B_1B$ and $CC_1D_1D$ are equal.

2007 Swedish Mathematical Competition, 6

In the plane, a triangle is given. Determine all points $P$ in the plane such that each line through $P$ that divides the triangle into two parts with the same area must pass through one of the vertices of the triangle.

Estonia Open Junior - geometry, 2007.1.2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

1996 May Olympiad, 1

A terrain ( $ABCD$ ) has a rectangular trapezoidal shape. The angle in $A$ measures $90^o$. $AB$ measures $30$ m, $AD$ measures $20$ m and $DC$ measures 45 m. This land must be divided into two areas of the same area, drawing a parallel to the $AD$ side . At what distance from $D$ do we have to draw the parallel? [img]https://1.bp.blogspot.com/-DnyNY3x4XKE/XNYvRUrLVTI/AAAAAAAAKLE/gohd7_S9OeIi-CVUVw-iM63uXE5u-WmGwCK4BGAYYCw/s400/image002.gif[/img]

1953 Moscow Mathematical Olympiad, 242

Let $A$ be a vertex of a regular star-shaped pentagon, the angle at $A$ being less than $180^o$ and the broken line $AA_1BB_1CC_1DD_1EE_1$ being its contour. Lines $AB$ and $DE$ meet at $F$. Prove that polygon $ABB_1CC_1DED_1$ has the same area as the quadrilateral $AD_1EF$. Note: A regular star pentagon is a figure formed along the diagonals of a regular pentagon.

1989 Tournament Of Towns, (232) 6

A regular hexagon is cut up into $N$ parallelograms of equal area. Prove that $N$ is divisible by three. (V. Prasolov, I. Sharygin, Moscow)

2004 Olympic Revenge, 1

$ABC$ is a triangle and $D$ is an internal point such that $\angle DAB=\angle DBC =\angle DCA$. $O_a$ is the circumcenter of $DBC$. $O_b$ is the circumcenter of $DAC$. $O_c$ is the circumcenter of $DAB$. Show that if the area of $ABC$ and $O_aO_bO_c$ are equal then $ABC$ is equilateral.

1994 Denmark MO - Mohr Contest, 5

In a right-angled and isosceles triangle, the two catheti are both length $1$. Find the length of the shortest line segment dividing the triangle into two figures with the same area, and specify the location of this line segment

2007 Bulgarian Autumn Math Competition, Problem 8.2

Let $ABCD$ be a convex quadrilateral. Determine all points $M$, which lie inside $ABCD$, such that the areas of $ABCM$ and $AMCD$ are equal.

2008 Switzerland - Final Round, 1

Let $ABC$ be a triangle with $\angle BAC \ne 45^o$ and $\angle ABC \ne 135^o$. Let $P$ be the point on the line $AB$ with $\angle CPB = 45^o$. Let $O_1$ and $O_2$ be the centers of the circumcircles of the triangles $ACP$ and $BCP$ respectively. Show that the area of the square $CO_1P O_2$ is equal to the area of the triangle $ABC$.

1982 Swedish Mathematical Competition, 3

Show that there is a point $P$ inside the quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal area. Show that $P$ must lie on one of the diagonals.

1970 Spain Mathematical Olympiad, 3

An arbitrary triangle $ABC$ is given and a point $P$ lies on the side $AB$. It is requested to draw through $P$ a line that divides the triangle into two figures of the same area.

1993 Romania Team Selection Test, 3

Suppose that each of the diagonals $AD,BE,CF$ divides the hexagon $ABCDEF$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?

2020 Regional Olympiad of Mexico West, 2

Let \( L \), \( M \) and \( N \) be the midpoints on the sides \( BC \), \( AC \) and \( AB\) of a triangle \( ABC \). Points \( D \), \( E \) and \( F \) are taken on the circle circumscribed to the triangle \( LMN \) so that the segments \( LD \), \( ME \) and \( NF \) are diameters of said circumference. Prove that the area of the hexagon \( LENDMF \) is equal to half the area of the triangle \( ABC \)