Found problems: 52
1971 Spain Mathematical Olympiad, 7
Transform by inversion two concentric and coplanar circles into two equal.
1995 Abels Math Contest (Norwegian MO), 2b
Two circles of the same radii intersect in two distinct points $P$ and $Q$. A line passing through $P$, not touching any of the circles, intersects the circles again at $A$ and $B$. Prove that $Q$ lies on the perpendicular bisector of $AB$.
2021 Sharygin Geometry Olympiad, 8.5
Points $A_1,A_2,A_3,A_4$ are not concyclic, the same for points $B_1,B_2,B_3,B_4$. For all $i, j, k$ the circumradii of triangles $A_iA_jA_k$ and $B_iB_jB_k$ are equal. Can we assert that $A_iA_j=B_iB_j$ for all $i, j$'?
Geometry Mathley 2011-12, 14.1
A circle $(K)$ is through the vertices $B, C$ of the triangle $ABC$ and intersects its sides $CA, AB$ respectively at $E, F$ distinct from $C, B$. Line segment $BE$ meets $CF$ at $G$. Let $M, N$ be the symmetric points of $A$ about $F, E$ respectively. Let $P, Q$ be the reflections of $C, B$ about $AG$. Prove that the circumcircles of triangles $BPM , CQN$ have radii of the same length.
Trần Quang Hùng
1947 Moscow Mathematical Olympiad, 127
Point $O$ is the intersection point of the heights of an acute triangle $\vartriangle ABC$. Prove that the three circles which pass:
a) through $O, A, B$,
b) through $O, B, C$, and
c) through $O, C, A$, are equal
1976 All Soviet Union Mathematical Olympiad, 222
Given three circumferences of the same radius in a plane.
a) All three are crossing in one point $K$. Consider three arcs $AK,CK,EK$ : the $A,C,E$ are the points of the circumferences intersection and the arcs are taken in the clockwise direction. Every arc is inside one circle, outside the second and on the border of the third one. Prove that the sum of the arcs is $180$ degrees.
b) Consider the case, when the three circles give a curvilinear triangle $BDF$ as their intersection (instead of one point $K$). The arcs are taken in the clockwise direction. Every arc is inside one circle, outside the second and on the border of the third one. Prove that the sum of the $AB, CD$ and $EF$ arcs is $180$ degrees.
2009 Cuba MO, 2
Let $I$ be the incenter of an acute riangle $ABC$. Let $C_A(A, AI)$ be the circle with center $A$ and radius $AI$. Circles $C_B(B, BI)$, $C_C(C, CI) $ are defined in an analogous way. Let $X, Y, Z$ be the intersection points of $C_B$ with $C_C$, $C_C$ with $C_A$, $C_A$ with $C_B$ respectively (different than $I$) . Show that if the radius of the circle that passes through the points $X, Y, Z$ is equal to the radius of the circle that passes through points $A$, $B$ and $C$ then triangle $ABC$ is equilateral.
1990 Tournament Of Towns, (244) 2
Two circles $c$ and $d$ are situated in the plane each outside the other. The points $C$ and $D$ are located on circles $c$ and $d$ respectively, so as to be as far apart as possible. Two smaller circles are constructed inside $c$ and $d$. Of these the first circle touches $c$ and the two tangents drawn from $C$ to $d$, while the second circle touches $d$ and the two tangents from $D$ to $c$. Prove that the small circles are equal.
(J. Tabov, Sofia)
Estonia Open Senior - geometry, 1997.2.3
The figure shows a square and three circles of equal radius tangent to each other and square passes. Find the radius of the circles if the square length is $1$.
[img]http://3.bp.blogspot.com/-iIjwupkz7DQ/XnrIRhKIJnI/AAAAAAAALhA/clERrIDqEtcujzvZk_qu975wsTjKaxCLQCK4BGAYYCw/s400/97%2Bestonia%2Bopen%2Bs2.3.png[/img]
2006 Austria Beginners' Competition, 4
Show that if a triangle has two excircles of the same size, then the triangle is isosceles.
(Note: The excircle $ABC$ to the side $ a$ touches the extensions of the sides $AB$ and $AC$ and the side $BC$.)
Indonesia Regional MO OSP SMA - geometry, 2018.3
Let $ \Gamma_1$ and $\Gamma_2$ be two different circles with the radius of same length and centers at points $O_1$ and $O_2$, respectively. Circles $\Gamma_1$ and $\Gamma_2$ are tangent at point $P$. The line $\ell$ passing through $O_1$ is tangent to $\Gamma_2$ at point $A$. The line $\ell$ intersects $\Gamma_1$ at point $X$ with $X$ between $A$ and $O_1$. Let $M$ be the midpoint of $AX$ and $Y$ the intersection of $PM$ and $\Gamma_2$ with $Y\ne P$. Prove that $XY$ is parallel to $O_1O_2$.
Swiss NMO - geometry, 2012.6
Let $ABCD$ be a parallelogram with at least an angle not equal to $90^o$ and $k$ the circumcircle of the triangle $ABC$. Let $E$ be the diametrically opposite point of $B$. Show that the circumcircle of the triangle $ADE$ and $k$ have the same radius.
2006 Sharygin Geometry Olympiad, 2
Points $A, B$ move with equal speeds along two equal circles.
Prove that the perpendicular bisector of $AB$ passes through a fixed point.
Ukrainian TYM Qualifying - geometry, 2020.12
On the side $CD$ of the square $ABCD$, the point $F$ is chosen and the equal squares $DGFE$ and $AKEH$ are constructed ($E$ and $H$ lie inside the square). Let $M$ be the midpoint of $DF$, $J$ is the incenter of the triangle $CFH$. Prove that:
a) the points $D, K, H, J, F$ lie on the same circle;
b) the circles inscribed in triangles $CFH$ and $GMF$ have the same radii.
Estonia Open Junior - geometry, 2000.1.5
Find the total area of the shaded area in the figure if all circles have an equal radius $R$ and the centers of the outer circles divide into six equal parts of the middle circle.
[img]http://3.bp.blogspot.com/-Ax0QJ38poYU/XovXkdaM-3I/AAAAAAAALvM/DAZGVV7TQjEnSf2y1mbnse8lL6YIg-BQgCK4BGAYYCw/s400/estonia%2B2000%2Bo.j.1.5.png[/img]
1956 Poland - Second Round, 2
Prove that if $ H $ is the point of intersection of the altitudes of a non-right triangle $ ABC $, then the circumcircles of the triangles $ AHB $, $ BHC $, $ CHA $ and $ ABC $ are equal.
2004 All-Russian Olympiad Regional Round, 11.2
Three circles $\omega_1$, $\omega_2$, $\omega_3$ of radius $r$ pass through the point$ S$ and internally touch the circle $\omega$ of radius $R$ ($R > r$) at points $T_1$, $T_2$, $T_3$ respectively. Prove that the line $T_1T_2$ passes through the second (different from $S$) intersection point of the circles $\omega_1$ and $\omega_2$.
2008 Thailand Mathematical Olympiad, 2
Let $AD$ be the common chord of two equal-sized circles $O_1$ and $O_2$. Let $B$ and $C$ be points on $O_1$ and $O_2$, respectively, so that $D$ lies on the segment $BC$. Assume that $AB = 15, AD = 13$ and $BC = 18$, what is the ratio between the inradii of $\vartriangle ABD$ and $\vartriangle ACD$?
2000 Czech And Slovak Olympiad IIIA, 2
Let be given an isosceles triangle $ABC$ with the base $AB$. A point $P$ is chosen on the altitude $CD$ so that the incircles of $ABP$ and $PECF$ are congruent, where $E$ and $F$ are the intersections of $AP$ and $BP$ with the opposite sides of the triangle, respectively. Prove that the incircles of triangles $ADP$ and $BCP$ are also congruent.
Ukrainian TYM Qualifying - geometry, 2011.2
Eight circles of radius $r$ located in a right triangle $ABC$ (angle $C$ is right) as shown in figure (each of the circles touches the respactive sides of the triangle and the other circles). Find the radius of the inscribed circle of triangle $ABC$.
[img]https://cdn.artofproblemsolving.com/attachments/4/7/1b1cd7d6bc7f5004b8e94468d723ed16e9a039.png[/img]
1998 Denmark MO - Mohr Contest, 1
In the figure shown, the small circles have radius $1$. Calculate the area of the gray part of the figure.
[img]https://1.bp.blogspot.com/-oy-WirJ6u9o/XzcFc3roVDI/AAAAAAAAMX8/qxNy5I_0RWUOxl-ZE52fnrwo0v0T7If9QCLcBGAsYHQ/s0/1998%2BMohr%2Bp1.png[/img]
2011 Indonesia TST, 2
On a line $\ell$ there exists $3$ points $A, B$, and $C$ where $B$ is located between $A$ and $C$. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be circles with $AC, AB$, and $BC$ as diameter respectively; $BD$ is a segment, perpendicular to $\ell$ with $D$ on $\Gamma_1$. Circles $\Gamma_4, \Gamma_5, \Gamma_6$ and $\Gamma_7$ satisfies the following conditions:
$\bullet$ $\Gamma_4$ touches $\Gamma_1, \Gamma_2$, and$ BD$.
$\bullet$ $\Gamma_5$ touches $\Gamma_1, \Gamma_3$, and $BD$.
$\bullet$ $\Gamma_6$ touches $\Gamma_1$ internally, and touches $\Gamma_2$ and $\Gamma_3$ externally.
$\bullet$ $\Gamma_7$ passes through $B$ and the tangent points of $\Gamma_2$ with $\Gamma_6$, and $\Gamma_3$ with $\Gamma_6$.
Show that the circles $\Gamma_4, \Gamma_5$, and $\Gamma_7$ are congruent.
Estonia Open Senior - geometry, 2004.1.3
a) Does there exist a convex quadrangle $ABCD$ satisfying the following conditions
(1) $ABCD$ is not cyclic;
(2) the sides $AB, BC, CD$ and $DA$ have pairwise different lengths;
(3) the circumradii of the triangles $ABC, ADC, BAD$ and $BCD$ are equal?
b) Does there exist such a non-convex quadrangle?
2021 Greece JBMO TST, 4
Given a triangle$ABC$ with $AB<BC<AC$ inscribed in circle $(c)$. The circle $c(A,AB)$ (with center $A$ and radius $AB$) interects the line $BC$ at point $D$ and the circle $(c)$ at point $H$. The circle $c(A,AC)$ (with center $A$ and radius $AC$) interects the line $BC$ at point $Z$ and the circle $(c)$ at point $E$. Lines $ZH$ and $ED$ intersect at point $T$. Prove that the circumscribed circles of triangles $TDZ$ and $TEH$ are equal.
2023 Flanders Math Olympiad, 2
In the plane, the point $M$ is the midpoint of a line segment $[AB]$ and $\ell$ is an arbitrary line that has no has a common point with the line segment $[AB]$ (and is also not perpendicular to $[AB]$). The points $X$ and $Y$ are the perpendicular projections of $A$ and $B$ onto $\ell$, respectively. Show that the circumscribed circles of triangle $\vartriangle AMX$ and triangle $\vartriangle BMY$ have the same radius.