This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2016 Denmark MO - Mohr Contest, 3

Prove that all quadrilaterals $ABCD$ where $\angle B = \angle D = 90^o$, $|AB| = |BC|$ and $|AD| + |DC| = 1$, have the same area. [img]https://1.bp.blogspot.com/-55lHuAKYEtI/XzRzDdRGDPI/AAAAAAAAMUk/n8lYt3fzFaAB410PQI4nMEz7cSSrfHEgQCLcBGAsYHQ/s0/2016%2Bmohr%2Bp3.png[/img]

1995 All-Russian Olympiad Regional Round, 9.6

Circles $S_1$ and $S_2$ with centers $O_1$ and $O_2$ respectively intersect at $A$ and $B$. The circle passing through $O_1$, $O_2$, and $A$ intersects $S_1$, $S_2$ and line $AB$ again at $D$, $E$, and $C$, respectively. Show that $CD = CB = CE$.

2009 Thailand Mathematical Olympiad, 4

In triangle $\vartriangle ABC$, $D$ is the midpoint of $BC$. Points $E$ and $F$ are chosen on side $AC$ so that $AF = F E = EC$. Let $AD$ intersect $BE$ and $BF$ and $G$ and $H$, respectively. Find the ratio of the areas of $\vartriangle BGH$ and $\vartriangle ABC$.

2022 Austrian MO National Competition, 2

Let $ ABC$ be an acute-angled, non-isosceles triangle with orthocenter $H$, $M$ midpoint of side $AB$ and $w$ bisector of angle $\angle ACB$. Let $S$ be the point of intersection of the perpendicular bisector of side $AB$ with $w$ and $F$ the foot of the perpendicular from $H$ on $w$. Prove that the segments $MS$ and $MF$ are equal. [i](Karl Czakler)[/i]

2022 Czech-Polish-Slovak Junior Match, 3

The points $D, E, F$ lie respectively on the sides $BC$, $CA$, $AB$ of the triangle ABC such that $F B = BD$, $DC = CE$, and the lines $EF$ and $BC$ are parallel. Tangent to the circumscribed circle of triangle $DEF$ at point $F$ intersects line $AD$ at point $P$. Perpendicular bisector of segment $EF$ intersects the segment $AC$ at $Q$. Prove that the lines $P Q$ and $BC$ are parallel.

2021 Sharygin Geometry Olympiad, 8.6

Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.

Durer Math Competition CD Finals - geometry, 2019.D3

a) Does there exist a quadrilateral with (both of) the following properties: three of its edges are of the same length, but the fourth one is different, and three of its angles are equal, but the fourth one is different? b) Does there exist a pentagon with (both of) the following properties: four of its edges are of the same length, but the fifth one is different, and four of its angles are equal, but the fifth one is different?

1998 Singapore MO Open, 1

In Fig. , $PA$ and $QB$ are tangents to the circle at $A$ and $B$ respectively. The line $AB$ is extended to meet $PQ$ at $S$. Suppose that $PA = QB$. Prove that $QS = SP$. [img]https://cdn.artofproblemsolving.com/attachments/6/f/f21c0c70b37768f3e80e9ee909ef34c57635d5.png[/img]

1955 Moscow Mathematical Olympiad, 293

Consider a quadrilateral $ABCD$ and points $K, L, M, N$ on sides $AB, BC, CD$ and $AD$, respectively, such that $KB = BL = a, MD = DN = b$ and $KL \nparallel MN$. Find the set of all the intersection points of $KL$ with $MN$ as $a$ and $b$ vary.

2021 Portugal MO, 2

Let $ABC$ be a triangle such that $AB = AC$. Let $D$ be a point in $[BC]$ and $E$ a point in $[AD]$ such that $\angle BE D = \angle BAC = 2 \angle DEC$. Shows that $DB = 2CD$. [img]https://cdn.artofproblemsolving.com/attachments/d/5/677e19d8e68a89134e17a4ab6051e41f283486.png[/img]

2004 Oral Moscow Geometry Olympiad, 5

The diagonals of the inscribed quadrilateral $ABCD$ meet at the point $M$, $\angle AMB = 60^o$. Equilateral triangles $ADK$ and $BCL$ are built outward on sides $AD$ and $BC$. Line $KL$ meets the circle circumscribed ariound $ABCD$ at points $P$ and $Q$. Prove that $PK = LQ$.

2010 Dutch IMO TST, 1

Let $ABC$ be an acute triangle such that $\angle BAC = 45^o$. Let $D$ a point on $AB$ such that $CD \perp AB$. Let $P$ be an internal point of the segment $CD$. Prove that $AP\perp BC$ if and only if $|AP| = |BC|$.

2016 Dutch IMO TST, 3

Let $\vartriangle ABC$ be an isosceles triangle with $|AB| = |AC|$. Let $D, E$ and $F$ be points on line segments $BC, CA$ and $AB$, respectively, such that $|BF| = |BE|$ and such that $ED$ is the internal angle bisector of $\angle BEC$. Prove that $|BD|= |EF|$ if and only if $|AF| = |EC|$.

2014 Estonia Team Selection Test, 4

In an acute triangle the feet of altitudes drawn from vertices $A$ and $B$ are $D$ and $E$, respectively. Let $M$ be the midpoint of side $AB$. Line $CM$ intersects the circumcircle of $CDE$ again in point $P$ and the circumcircle of $CAB$ again in point $Q$. Prove that $|MP| = |MQ|$.

1949-56 Chisinau City MO, 45

Determine the locus of points, from which the tangent segments to two given circles are equal.

1969 Dutch Mathematical Olympiad, 3

Given a quadrilateral $ABCD$ with $AB = BD = DC$ and $AC = BC$. On $BC$ lies point $E$ such that $AE = AB$. Prove that $ED = EB$.

2009 Belarus Team Selection Test, 1

Two equal circles $S_1$ and $S_2$ meet at two different points. The line $\ell$ intersects $S_1$ at points $A,C$ and $S_2$ at points $B,D$ respectively (the order on $\ell$: $A,B,C,D$) . Define circles $\Gamma_1$ and $\Gamma_2$ as follows: both $\Gamma_1$ and $\Gamma_2$ touch $S_1$ internally and $S_2$ externally, both $\Gamma_1$ and $\Gamma_2$ line $\ell$, $\Gamma_1$ and $\Gamma_2$ lie in the different halfplanes relatively to line $\ell$. Suppose that $\Gamma_1$ and $\Gamma_2$ touch each other. Prove that $AB=CD$. I. Voronovich

2001 Mexico National Olympiad, 5

$ABC$ is a triangle with $AB < AC$ and $\angle A = 2 \angle C$. $D$ is the point on $AC$ such that $CD = AB$. Let L be the line through $B$ parallel to $AC$. Let $L$ meet the external bisector of $\angle A$ at $M$ and the line through $C$ parallel to $AB$ at $N$. Show that $MD = ND$.

2019 Regional Olympiad of Mexico Center Zone, 3

Let $ABC$ be an acute triangle and $D$ a point on the side $BC$ such that $\angle BAD = \angle DAC$. The circumcircles of the triangles $ABD$ and $ACD$ intersect the segments $AC$ and $AB$ at $E$ and $F$, respectively. The internal bisectors of $\angle BDF$ and $\angle CDE$ intersect the sides $AB$ and $AC$ at $P$ and $Q$, respectively. Points $X$ and $Y$ are chosen on the side $BC$ such that $PX$ is parallel to $AC$ and $QY$ is parallel to $AB$. Finally, let $Z$ be the point of intersection of $BE$ and $CF$. Prove that $ZX = ZY$.

2016 Saudi Arabia IMO TST, 2

Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$. Tran Quang Hung

2004 Estonia National Olympiad, 2

On side, $BC, AB$ of a parallelogram $ABCD$ lie points $M,N$ respectively such that $|AM| =|CN|$. Let $P$ be the intersection of $AM$ and $CN$. Prove that the angle bisector of $\angle APC$ passes through $D$.

2018 Romania National Olympiad, 4

In the rectangular parallelepiped $ABCDA'B'C'D'$ we denote by $M$ the center of the face $ABB'A'$. We denote by $M_1$ and $M_2$ the projections of $M$ on the lines $B'C$ and $AD'$ respectively. Prove that: a) $MM_1 = MM_2$ b) if $(MM_1M_2) \cap (ABC) = d$, then $d \parallel AD$; c) $\angle (MM_1M_2), (A B C)= 45^ o \Leftrightarrow \frac{BC}{AB}=\frac{BB'}{BC}+\frac{BC}{BB'}$.

2000 Tournament Of Towns, 2

The chords $AC$ and $BD$ of a, circle with centre $O$ intersect at the point $K$. The circumcentres of triangles $AKB$ and $CKD$ are $M$ and $N$ respectively. Prove that $OM = KN$. (A Zaslavsky )

2003 Olympic Revenge, 3

Let $ABC$ be a triangle with $\angle BAC =60^\circ$. $A'$ is the symmetric point of $A$ wrt $\overline{BC}$. $D$ is the point in $\overline{AC}$ such that $\overline{AB}=\overline{AD}$. $H$ is the orthocenter of triangle $ABC$. $l$ is the external angle bisector of $\angle BAC$. $\{M\}=\overline{A'D}\cap l$,$\{N\}=\overline{CH} \cap l$. Show that $\overline{AM}=\overline{AN}$.

2015 Thailand TSTST, 2

In any $\vartriangle ABC, \ell$ is any line through $C$ and points $P, Q$. If $BP, AQ$ are perpendicular to the line $\ell$ and $M$ is the midpoint of the line segment $AB$, then prove that $MP = MQ$