This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2010 Dutch IMO TST, 4

Let $ABCD$ be a square with circumcircle $\Gamma_1$. Let $P$ be a point on the arc $AC$ that also contains $B$. A circle $\Gamma_2$ touches $\Gamma_1$ in $P$ and also touches the diagonal $AC$ in $Q$. Let $R$ be a point on $\Gamma_2$ such that the line $DR$ touches $\Gamma_2$. Proof that $|DR| = |DA|$.

Geometry Mathley 2011-12, 3.1

$AB,AC$ are tangent to a circle $(O)$, $B,C$ are the points of tangency. $Q$ is a point iside the angle $BAC$, on the ray $AQ$, take a point $P$ suc that $OP$ is perpendicular to $AQ$. The line $OP$ meets the circumcircles triangles $BPQ$ and $CPQ$ at $I, J$. Prove that $OI = OJ$. Hồ Quang Vinh

2016 Czech-Polish-Slovak Junior Match, 4

We are given an acute-angled triangle $ABC$ with $AB < AC < BC$. Points $K$ and $L$ are chosen on segments $AC$ and $BC$, respectively, so that $AB = CK = CL$. Perpendicular bisectors of segments $AK$ and $BL$ intersect the line $AB$ at points $P$ and $Q$, respectively. Segments $KP$ and $LQ$ intersect at point $M$. Prove that $AK + KM = BL + LM$. Poland

2017 Switzerland - Final Round, 5

Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.

Kyiv City MO Juniors Round2 2010+ geometry, 2018.8.3

In the triangle $ABC$ it is known that $\angle ACB> 90 {} ^ \circ$, $\angle CBA> 45 {} ^ \circ$. On the sides $AC$ and $AB$, respectively, there are points $P$ and $T$ such that $ABC$ and $PT = BC$. The points ${{P} _ {1}}$ and ${{T} _ {1}}$ on the sides $AC$ and $AB$ are such that $AP = C {{P} _ {1}}$ and $AT = B {{T} _ {1}}$. Prove that $\angle CBA- \angle {{P} _ {1}} {{T} _ {1}} A = 45 {} ^ \circ$. (Anton Trygub)

2020 Yasinsky Geometry Olympiad, 4

The median $AM$ is drawn in the triangle $ABC$ ($AB \ne AC$). The point $P$ is the foot of the perpendicular drawn on the segment $AM$ from the point $B$. On the segment $AM$ we chose such a point $Q$ that $AQ = 2PM$. Prove that $\angle CQM = \angle BAM$.

2020 Dutch BxMO TST, 4

Three different points $A,B$ and $C$ lie on a circle with center $M$ so that $| AB | = | BC |$. Point $D$ is inside the circle in such a way that $\vartriangle BCD$ is equilateral. Let $F$ be the second intersection of $AD$ with the circle . Prove that $| F D | = | FM |$.

2015 Caucasus Mathematical Olympiad, 2

In the convex quadrilateral $ABCD$, point $K$ is the midpoint of $AB$, point $L$ is the midpoint of $BC$, point $M$ is the midpoint of CD, and point $N$ is the midpoint of $DA$. Let $S$ be a point lying inside the quadrilateral $ABCD$ such that $KS = LS$ and $NS = MS$ .Prove that $\angle KSN = \angle MSL$.

2002 Croatia Team Selection Test, 2

A quadrilateral $ABCD$ is circumscribed about a circle. Lines $AC$ and $DC$ meet at point $E$ and lines $DA$ and $BC$ meet at $F$, where $B$ is between $A$ and $E$ and between $C$ and $F$. Let $I_1, I_2$ and $I_3$ be the incenters of triangles $AFB, BEC$ and $ABC$, respectively. The line $I_1I_3$ intersects $EA$ at $K$ and $ED$ at $L$, whereas the line $I_2I_3$ intersects $FC$ at $M$ and $FD$ at $N$. Prove that $EK = EL$ if and only if $FM = FN$

2019 Ukraine Team Selection Test, 1

In a triangle $ABC$, $\angle ABC= 60^o$, point $I$ is the incenter. Let the points $P$ and $T$ on the sides $AB$ and $BC$ respectively such that $PI \parallel BC$ and $TI \parallel AB$ , and points $P_1$ and $T_1$ on the sides $AB$ and $BC$ respectively such that $AP_1 = BP$ and $CT_1 = BT$. Prove that point $I$ lies on segment $P_1T_1$. (Anton Trygub)

1998 Estonia National Olympiad, 2

Let $S$ be the incenter of the triangle $ABC$ and let the line $AS$ intersect the circumcircle of triangle $ABC$ at point $D$ ($D\ne A$). Prove that the segments $BD, CD$ and $SD$ are of equal length.

2019 Girls in Mathematics Tournament, 5

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $X$ and $K$ points over $AC$ and $AB$, respectively, such that $KX = CX$. Bisector of $\angle AKX$ intersects line $BC$ at $Z$. Show that $XZ$ passes through the midpoint of $BK$.

2011 Oral Moscow Geometry Olympiad, 2

In an isosceles triangle $ABC$ ($AB=AC$) on the side $BC$, point $M$ is marked so that the segment $CM$ is equal to the altitude of the triangle drawn on this side, and on the side $AB$, point $K$ is marked so that the angle $\angle KMC$ is right. Find the angle $\angle ACK$.

2015 Oral Moscow Geometry Olympiad, 4

In trapezoid $ABCD$, the bisectors of angles $A$ and $D$ intersect at point $E$ lying on the side of $BC$. These bisectors divide the trapezoid into three triangles into which the circles are inscribed. One of these circles touches the base $AB$ at the point $K$, and two others touch the bisector $DE$ at points $M$ and $N$. Prove that $BK = MN$.

2005 Singapore Senior Math Olympiad, 2

Consider the nonconvex quadrilateral $ABCD$ with $\angle C>180$ degrees. Let the side $DC$ extended to meet $AB$ at $F$ and the side $BC$ extended to meet $AD$ at $E$. A line intersects the interiors of the sides $AB,AD,BC,CD$ at points $K,L,J,I$ respectively. Prove that if $DI=CF$ and $BJ=CE$, then $KJ=IL$

2022 Sharygin Geometry Olympiad, 3

Let $CD$ be an altitude of right-angled triangle $ABC$ with $\angle C = 90$. Regular triangles$ AED$ and $CFD$ are such that $E$ lies on the same side from $AB$ as $C$, and $F$ lies on the same side from $CD$ as $B$. The line $EF$ meets $AC$ at $L$. Prove that $FL = CL + LD$

2010 Grand Duchy of Lithuania, 4

In the triangle $ABC$ angle $C$ is a right angle. On the side $AC$ point $D$ has been found, and on the segment $BD$ point K has been found such that $\angle ABC = \angle KAD = \angle AKD$. Prove that $BK = 2DC$.

2010 Contests, 3

Consider triangle $ABC$ with $AB = AC$ and $\angle A = 40 ^o$. The points $S$ and $T$ are on the sides $AB$ and $BC$, respectively, so that $\angle BAT = \angle BCS= 10 ^o$. The lines $AT$ and $CS$ intersect at point $P$. Prove that $BT = 2PT$.

2016 Ecuador NMO (OMEC), 3

Let $A, B, C, D$ be four different points on a line $\ell$, such that $AB = BC = CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points on the plane such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the measure of the angle $\angle MBN$.

1997 Swedish Mathematical Competition, 2

Let $D$ be the point on side $AC$ of a triangle $ABC$ such that $BD$ bisects $\angle B$, and $E$ be the point on side $AB$ such that $3\angle ACE = 2\angle BCE$. Suppose that $BD$ and $CE$ intersect at a point $P$ with $ED = DC = CP$. Determine the angles of the triangle.

2009 All-Russian Olympiad Regional Round, 11.6

Point $D$ on side $BC$ of acute triangle ABC is such that $AB=AD$. The circumcircle of triangle $ABD$ intersects side $AC$ at points $A$ and $K$. Line $DK$ intersects the perpendicular drawn from $B$ on $AC$, at the point $L$. Prove that $CL= BC$

Champions Tournament Seniors - geometry, 2018.3

The vertex $F$ of the parallelogram $ACEF$ lies on the side $BC$ of parallelogram $ABCD$. It is known that $AC = AD$ and $AE = 2CD$. Prove that $\angle CDE = \angle BEF$.

2008 Tournament Of Towns, 2

A line parallel to the side $AC$ of triangle $ABC$ cuts the side $AB$ at $K$ and the side $BC$ at $M$. $O$ is the intersection point of $AM$ and $CK$. If $AK = AO$ and $KM = MC$, prove that $AM = KB$.

2020 Yasinsky Geometry Olympiad, 5

It is known that a circle can be inscribed in the quadrilateral $ABCD$, in addition $\angle A = \angle C$. Prove that $AB = BC$, $CD = DA$. (Olena Artemchuk)

2017 Saudi Arabia IMO TST, 2

Let $ABCD$ be the circumscribed quadrilateral with the incircle $(I)$. The circle $(I)$ touches $AB, BC, C D, DA$ at $M, N, P,Q$ respectively. Let $K$ and $L$ be the circumcenters of the triangles $AMN$ and $APQ$ respectively. The line $KL$ cuts the line $BD$ at $R$. The line $AI$ cuts the line $MQ$ at $J$. Prove that $RA = RJ$.