This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2010 Sharygin Geometry Olympiad, 5

Let $BH$ be an altitude of a right-angled triangle $ABC$ ($\angle B = 90^o$). The incircle of triangle $ABH$ touches $AB,AH$ in points $H_1, B_1$, the incircle of triangle $CBH$ touches $CB,CH$ in points $H_2, B_2$, point $O$ is the circumcenter of triangle $H_1BH_2$. Prove that $OB_1 = OB_2$.

Novosibirsk Oral Geo Oly IX, 2017.5

Point $K$ is marked on the diagonal $AC$ in rectangle $ABCD$ so that $CK = BC$. On the side $BC$, point $M$ is marked so that $KM = CM$. Prove that $AK + BM = CM$.

2017 Costa Rica - Final Round, 5

Consider two circles $\Pi_1$ and $\Pi_1$ tangent externally at point $S$, such that the radius of $\Pi_2$ is triple the radius of $\Pi_1$. Let $\ell$ be a line that is tangent to $\Pi_1$ at point $ P$ and tangent to $\Pi_2$ at point $Q$, with $P$ and $Q$ different from $S$. Let $T$ be a point at $\Pi_2$, such that the segment $TQ$ is diameter of $\Pi_2$ and let point $R$ be the intersection of the bisector of $\angle SQT$ with $ST$. Prove that $QR = RT$.

Kyiv City MO Juniors Round2 2010+ geometry, 2015.789.4

In the acute triangle $ABC$ the side $BC> AB$, and the angle bisector $BL = AB$. On the segment $BL$ there is a point $M$, for which $\angle AML = \angle BCA$. Prove that $AM = LC$.

2021 Saudi Arabia JBMO TST, 2

In a triangle $ABC$, let $K$ be a point on the median $BM$ such that $CM = CK$. It turned out that $\angle CBM = 2\angle ABM$. Show that $BC = KM$.

Kyiv City MO Juniors 2003+ geometry, 2021.9.5

Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and$ PM \perp BM$. The point $Q$ is chosen on the line $BP$ so that $\angle AQC = 90^o$, and the points $B$ and $Q$ lie on opposite sides of the line $AC$. Prove that $AB = BQ$. (Mikhail Standenko)

1997 Singapore Team Selection Test, 1

Let $ABC$ be a triangle and let $D, E$ and $F$ be the midpoints of the sides $AB, BC$ and $CA$ respectively. Suppose that the angle bisector of $\angle BDC$ meets $BC$ at the point $M$ and the angle bisector of $\angle ADC$ meets $AC$ at the point $N$. Let $MN$ and $CD$ intersect at $O$ and let the line $EO$ meet $AC$ at $P$ and the line $FO$ meet $BC$ at $Q$. Prove that $CD = PQ$.

2019 Argentina National Olympiad, 3

In triangle $ABC$ it is known that $\angle ACB = 2\angle ABC$. Furthermore $P$ is an interior point of the triangle $ABC$ such that $AP = AC$ and $PB = PC$. Prove that $\angle BAC = 3 \angle BAP$.

1997 Tournament Of Towns, (560) 1

$M$ and $N$ are the midpoints of the sides $AB$ and $AC$ of a triangle ABC respectively. $P$ and $Q$ are points on the sides $AB$ and $AC$ respectively such that the bisector of the angle $ACB$ also bisects the angle $MCP$, and the bisector of the angle $ABC$ also bisects the angle $NBQ$. If $AP = AQ$, does it follow that $ABC$ is isosceles? (V Senderov)

2000 239 Open Mathematical Olympiad, 3

Let $ AA_1 $ and $ CC_1 $ be the altitudes of the acute-angled triangle $ ABC $. A line passing through the centers of the inscribed circles the triangles $ AA_1C $ and $ CC_1A $ intersect the sides of $ AB $ and $ BC $ triangle $ ABC $ at points $ X $ and $ Y $. Prove that $ BX = BY $.

2005 Oral Moscow Geometry Olympiad, 3

In triangle $ABC$, points $K ,P$ are chosen on the side $AB$ so that $AK = BL$, and points $M,N$ are chosen on the side $BC$ so that $CN = BM$. Prove that $KN + LM \ge AC$. (I. Bogdanov)

2014 Saudi Arabia Pre-TST, 4.4

Let $\vartriangle ABC$ be an acute triangle, with $\angle A> \angle B \ge \angle C$. Let $D, E$ and $F$ be the tangency points between the incircle of triangle and sides $BC, CA, AB$, respectively. Let $J$ be a point on $(BD)$, $K$ a point on $(DC)$, $L$ a point on $(EC)$ and $M$ a point on $(FB)$, such that $$AF = FM = JD = DK = LE = EA.$$Let $P$ be the intersection point between $AJ$ and $KM$ and let $Q$ be the intersection point between $AK$ and $JL$. Prove that $PJKQ$ is cyclic.

2005 Mexico National Olympiad, 6

Let $ABC$ be a triangle and $AD$ be the angle bisector of $<BAC$, with $D$ on $BC$. Let $E$ be a point on segment $BC$ such that $BD = EC$. Through $E$ draw $l$ a parallel line to $AD$ and let $P$ be a point in $l$ inside the triangle. Let $G$ be the point where $BP$ intersects $AC$ and $F$ be the point where $CP$ intersects $AB$. Show $BF = CG$.

2019 Portugal MO, 5

Let $[ABC]$ be a acute-angled triangle and its circumscribed circle $\Gamma$. Let $D$ be the point on the line $AB$ such that $A$ is the midpoint of the segment $[DB]$ and $P$ is the point of intersection of $CD$ with $\Gamma$. Points $W$ and $L$ lie on the smaller arcs $\overarc{BC}$ and $\overarc{AB}$, respectively, and are such that $\overarc{BW} = \overarc{LA }= \overarc{AP}$. The $LC$ and $AW$ lines intersect at $Q$. Shows that $LQ = BQ$.

Indonesia MO Shortlist - geometry, g6.6

Let $ABC$ be an acute angled triangle with circumcircle $O$. Line $AO$ intersects the circumcircle of triangle $ABC$ again at point $D$. Let $P$ be a point on the side $BC$. Line passing through $P$ perpendicular to $AP$ intersects lines $DB$ and $DC$ at $E$ and $F$ respectively . Line passing through $D$ perpendicular to $BC$ intersects $EF$ at point $Q$. Prove that $EQ = FQ$ if and only if $BP = CP$.

Estonia Open Junior - geometry, 2010.1.2

Given a convex quadrangle $ABCD$ with $|AD| = |BD| = |CD|$ and $\angle ADB = \angle DCA$, $\angle CBD = \angle BAC$, find the sizes of the angles of the quadrangle.

2015 Dutch IMO TST, 1

In a quadrilateral $ABCD$ we have $\angle A = \angle C = 90^o$. Let $E$ be a point in the interior of $ABCD$. Let $M$ be the midpoint of $BE$. Prove that $\angle ADB = \angle EDC$ if and only if $|MA| = |MC|$.

2020 Portugal MO, 2

In a triangle $[ABC]$, $\angle C = 2\angle A$. A point $D$ is marked on the side $[AC]$ such that $\angle ABD = \angle DBC$. Knowing that $AB = 10$ and $CD = 3$, what is the length of the side $[BC]$?

2016 Hanoi Open Mathematics Competitions, 13

Let $H$ be orthocenter of the triangle $ABC$. Let $d_1, d_2$ be lines perpendicular to each-another at $H$. The line $d_1$ intersects $AB, AC$ at $D, E$ and the line d_2 intersects $B C$ at $F$. Prove that $H$ is the midpoint of segment $DE$ if and only if $F$ is the midpoint of segment $BC$.

Ukraine Correspondence MO - geometry, 2011.9

On the diagonals $AC$ and $CE$ of a regular hexagon $ABCDEF$ with side $1$ we mark points$ M$ and $N$ such that $AM = CN = a$. Find $a$ if the points $B, M, N$ lie on the same line.

Novosibirsk Oral Geo Oly VII, 2019.3

Equal line segments are marked in triangle $ABC$. Find its angles. [img]https://cdn.artofproblemsolving.com/attachments/0/2/bcb756bba15ba57013f1b6c4cbe9cc74171543.png[/img]

2005 Paraguay Mathematical Olympiad, 5

Given a chord $PQ$ of a circle and $M$ the midpoint of the chord, let $AB$ and $CD$ be two chords that pass through $M$. $AC$ and $BD$ are drawn until $PQ$ is intersected at points $X$ and $Y$ respectively. Show that $X$ and $Y$ are equidistant from $M$.

Kyiv City MO Juniors 2003+ geometry, 2014.851

On the side $AB$ of the triangle $ABC$ mark the point $K$. The segment $CK$ intersects the median $AM$ at the point $F$. It is known that $AK = AF$. Find the ratio $MF: BK$.

2001 Mexico National Olympiad, 5

$ABC$ is a triangle with $AB < AC$ and $\angle A = 2 \angle C$. $D$ is the point on $AC$ such that $CD = AB$. Let L be the line through $B$ parallel to $AC$. Let $L$ meet the external bisector of $\angle A$ at $M$ and the line through $C$ parallel to $AB$ at $N$. Show that $MD = ND$.

2012 Denmark MO - Mohr Contest, 5

In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.