Found problems: 296
OIFMAT I 2010, 2
In an acute angle $ \vartriangle ABC $, let $ AD, BE, CF $ be their altitudes (with $ D, E, F $ lying on $ BC, CA, AB $, respectively). Let's call $ O, H $ the circumcenter and orthocenter of $ \vartriangle ABC $, respectively. Let $ P = CF \cap AO $. Suppose the following two conditions are true:
$\bullet$ $ FP = EH $
$\bullet$ There is a circle that passes through points $ A, O, H, C $
Prove that the $ \vartriangle ABC $ is equilateral.
2019 Hanoi Open Mathematics Competitions, 13
Find all points inside a given equilateral triangle such that the distances from it to three sides of the given triangle are the side lengths of a triangle.
2005 Abels Math Contest (Norwegian MO), 3b
In the parallelogram $ABCD$, all sides are equal, and $\angle A = 60^o$. Let $F$ be a point on line $AD, H$ a point on line $DC$, and $G$ a point on diagonal $AC$ such that $DFGH$ is a parallelogram. Show that then $\vartriangle BHF$ is equilateral.
Ukrainian From Tasks to Tasks - geometry, 2012.2
The triangle $ABC$ is equilateral. Find the locus of the points $M$ such that the triangles $ABM$ and $ACM$ are both isosceles.
1999 Ukraine Team Selection Test, 11
Let $ABCDEF$ be a convex hexagon such that $BCEF$ is a parallelogram and $ABF$ an equilateral triangle. Given that $BC = 1, AD = 3, CD+DE = 2$, compute the area of $ABCDEF$
1954 Moscow Mathematical Olympiad, 277
The map of a town shows a plane divided into equal equilateral triangles. The sides of these triangles are streets and their vertices are intersections; $6$ streets meet at each junction. Two cars start simultaneously in the same direction and at the same speed from points $A$ and $B$ situated on the same street (the same side of a triangle). After any intersection an admissible route for each car is either to proceed in its initial direction or turn through $120^o$ to the right or to the left. Can these cars meet? (Either prove that these cars won’t meet or describe a route by which they will meet.)
[img]https://cdn.artofproblemsolving.com/attachments/2/d/2c934bcd0c7fc3d9dca9cee0b6f015076abbdb.png[/img]
1992 All Soviet Union Mathematical Olympiad, 578
An equilateral triangle side $10$ is divided into $100$ equilateral triangles of side $1$ by lines parallel to its sides. There are m equilateral tiles of $4$ unit triangles and $25 - m$ straight tiles of $4$ unit triangles (as shown below). For which values of $m$ can they be used to tile the original triangle. [The straight tiles may be turned over.]
2023 Portugal MO, 4
Let $[ABC]$ be an equilateral triangle and $P$ be a point on $AC$ such that $\overline{PC}= 7$. The straight line that passes through $P$ and is perpendicular to $AC$, intersects $CB$ at point $M$ and intersects $AB$ at point $Q$. The midpoint $N$ of $[MQ]$ is such that $\overline{BN} = 14$. Determine the side of the triangle $[ABC]$.
Estonia Open Junior - geometry, 2001.1.3
Consider points $C_1, C_2$ on the side $AB$ of a triangle $ABC$, points $A_1, A_2$ on the side $BC$ and points $B_1 , B_2$ on the side $CA$ such that these points divide the corresponding sides to three equal parts. It is known that all the points $A_1, A_2, B_1, B_2 , C_1$ and $C_2$ are concyclic. Prove that triangle $ABC$ is equilateral.
2022 Novosibirsk Oral Olympiad in Geometry, 6
Triangle $ABC$ is given. On its sides $AB$, $BC$ and $CA$, respectively, points $X, Y, Z$ are chosen so that $$AX : XB =BY : YC = CZ : ZA = 2:1.$$ It turned out that the triangle $XYZ$ is equilateral. Prove that the original triangle $ABC$ is also equilateral.
Novosibirsk Oral Geo Oly IX, 2016.6
An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.
1981 Czech and Slovak Olympiad III A, 3
Let $ABCD$ be a unit square. Consider an equilateral triangle $XYZ$ with $X,Y$ as (inner or boundary) points of the square. Determine the locus $M$ of vertices $Z$ of all these triangles $XYZ$ and compute the area of $M.$
1999 Swedish Mathematical Competition, 4
An equilateral triangle of side $x$ has its vertices on the sides of a square side $1$. What are the possible values of $x$?
2013 Peru MO (ONEM), 3
Let $P$ be a point inside the equilateral triangle $ABC$ such that $6\angle PBC = 3\angle PAC = 2\angle PCA$. Find the measure of the angle $\angle PBC$ .
Novosibirsk Oral Geo Oly IX, 2022.6
Triangle $ABC$ is given. On its sides $AB$, $BC$ and $CA$, respectively, points $X, Y, Z$ are chosen so that $$AX : XB =BY : YC = CZ : ZA = 2:1.$$ It turned out that the triangle $XYZ$ is equilateral. Prove that the original triangle $ABC$ is also equilateral.
2010 Oral Moscow Geometry Olympiad, 1
Two equilateral triangles $ABC$ and $CDE$ have a common vertex (see fig). Find the angle between straight lines $AD$ and $BE$.
[img]https://1.bp.blogspot.com/-OWpqpAqR7Zw/Xzj_fyqhbFI/AAAAAAAAMao/5y8vCfC7PegQLIUl9PARquaWypr8_luAgCLcBGAsYHQ/s0/2010%2Boral%2Bmoscow%2Bgeometru%2B8.1.gif[/img]
2010 Thailand Mathematical Olympiad, 4
Let $\vartriangle ABC$ be an equilateral triangle, and let $M$ and $N$ be points on $AB$ and $AC$, respectively, so that $AN = BM$ and $3MB = AB$. Lines $CM$ and $BN$ intersect at $O$. Find $\angle AOB$.
2006 Oral Moscow Geometry Olympiad, 5
Equilateral triangles $ABC_1, BCA_1, CAB_1$ are built on the sides of the triangle $ABC$ to the outside. On the segment $A_1B_1$ to the outer side of the triangle $A_1B_1C_1$, an equilateral triangle $A_1B_1C_2$ is constructed. Prove that $C$ is the midpoint of the segment $C_1C_2$.
(A. Zaslavsky)
1974 Spain Mathematical Olympiad, 4
All three sides of an equilateral triangle are assumed to be reflective (except in the vertices), in such a way that they reflect the rays of light located in their plane, that fall on them and that come out of an interior point of the triangle.
Determine the path of a ray of light that, starting from a vertex of the triangle reach another vertex of the same after reflecting successively on the three sides. Calculate the length of the path followed by the light assuming that the side of the triangle measures $1$ m.
1998 Switzerland Team Selection Test, 8
Let $\vartriangle ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP,BP,CP$ meet the sides $BC,CA,AB$ in the points $X,Y,Z$ respectively. Prove that $XY \cdot YZ\cdot ZX \ge XB\cdot YC\cdot ZA$.
2016 BMT Spring, 3
Consider an equilateral triangle and square, both with area $1$. What is the product of their perimeters?
2011 Tournament of Towns, 3
(a) Does there exist an innite triangular beam such that two of its cross-sections are similar but not congruent triangles?
(b) Does there exist an innite triangular beam such that two of its cross-sections are equilateral triangles of sides $1$ and $2$ respectively?
Cono Sur Shortlist - geometry, 1993.8
In a triangle $ABC$, let $D$, $E$ and $F$ be the touchpoints of the inscribed circle and the sides $AB$, $BC$ and $CA$. Show that the triangles $DEF$ and $ABC$ are similar if and only if $ABC$ is equilateral.
2020 Dutch BxMO TST, 4
Three different points $A,B$ and $C$ lie on a circle with center $M$ so that $| AB | = | BC |$. Point $D$ is inside the circle in such a way that $\vartriangle BCD$ is equilateral. Let $F$ be the second intersection of $AD$ with the circle . Prove that $| F D | = | FM |$.
Durer Math Competition CD Finals - geometry, 2019.C5
$A, B, C, D$ are four distinct points such that triangles $ABC$ and $CBD$ are both equilateral. Find as many circles as you can, which are equidistant from the four points. How can these circles be constructed?
[i]Remark: The distance between a point $P$ and a circle c is measured as follows: we join $P$ and the centre of the circle with a straight line, and measure how much we need to travel along thisline (starting from $P$) to hit the perimeter of the circle. If $P$ is an internal point of the circle, the distance is the length of the shorter such segment. The distance between a circle and itscentre is the radius of the circle.[/i]