This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

May Olympiad L1 - geometry, 1998.4

$ABCD$ is a square of center $O$. On the sides $DC$ and $AD$ the equilateral triangles DAF and DCE have been constructed. Decide if the area of the $EDF$ triangle is greater, less or equal to the area of the $DOC$ triangle. [img]https://4.bp.blogspot.com/-o0lhdRfRxl0/XNYtJgpJMmI/AAAAAAAAKKg/lmj7KofAJosBZBJcLNH0JKjW3o17CEMkACK4BGAYYCw/s1600/may4_2.gif[/img]

1981 Dutch Mathematical Olympiad, 2

Given is the equilateral triangle $ABC$ with center $M$. On $CA$ and $CB$ the respective points $D$ and $E$ lie such that $CD = CE$. $F$ is such that $DMFB$ is a parallelogram. Prove that $\vartriangle MEF$ is equilateral.

Novosibirsk Oral Geo Oly VII, 2021.6

Inside the equilateral triangle $ABC$, points $P$ and $Q$ are chosen so that the quadrilateral $APQC$ is convex, $AP = PQ = QC$ and $\angle PBQ = 30^o$. Prove that $AQ = BP$.

2012 Austria Beginners' Competition, 4

A segment $AB$ is given. We erect the equilateral triangles $ABC$ and $ADB$ above and below $AB$. We denote the midpoints of $AC$ and $BC$ by $E$ and $F$ respectively. Prove that the straight lines $DE$ and $DF$ divide the segment $AB$ into three parts of equal length .

Estonia Open Senior - geometry, 1993.5

Within an equilateral triangle $ABC$, take any point $P$. Let $L, M, N$ be the projections of $P$ on sides $AB, BC, CA$ respectively. Prove that $\frac{AP}{NL}=\frac{BP}{LM}=\frac{CP}{MN}$.

2005 Peru MO (ONEM), 3

Let $A,B,C,D$, be four different points on a line $\ell$, so that $AB=BC=CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points of the plane be such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the angle $\angle MBN$.

Kyiv City MO Juniors Round2 2010+ geometry, 2015.8.41

On the sides $AB, \, \, BC, \, \, CA$ of the triangle $ABC$ the points ${{C} _ {1}}, \, \, {{A} _ { 1}},\, \, {{B} _ {1}}$ are selected respectively, that are different from the vertices. It turned out that $\Delta {{A} _ {1}} {{B} _ {1}} {{C} _ {1}}$ is equilateral, $\angle B{{C}_{1}}{{A}_{1}}=\angle {{C}_{1}}{{B}_{1}}A$ and $\angle B{{A}_{1}}{{C}_{1}}=\angle {{A}_{1}}{{B}_{1}}C$ . Is $ \Delta ABC$ equilateral?

Indonesia MO Shortlist - geometry, g4

Inside the equilateral triangle $ABC$ lies the point $T$. Prove that $TA$, $TB$ and $TC$ are the lengths of the sides of a triangle.

1999 Israel Grosman Mathematical Olympiad, 3

For every triangle $ABC$, denote by $D(ABC)$ the triangle whose vertices are the tangency points of the incircle of $\vartriangle ABC$ with the sides. Assume that $\vartriangle ABC$ is not equilateral. (a) Prove that $D(ABC)$ is also not equilateral. (b) Find in the sequence $T_1 = \vartriangle ABC, T_{k+1} = D(T_k)$ for $k \in N$ a triangle whose largest angle $\alpha$ satisfies $0 < \alpha -60^o < 0.0001^o$

1973 Swedish Mathematical Competition, 3

$ABC$ is a triangle with $\angle A = 90^\circ$, $\angle B = 60^\circ$. The points $A_1$, $B_1$, $C_1$ on $BC$, $CA$, $AB$ respectively are such that $A_1B_1C_1$ is equilateral and the perpendiculars (to $BC$ at $A_1$, to $CA$ at $B_1$ and to $AB$ at $C_1$) meet at a point $P$ inside the triangle. Find the ratios $PA_1:PB_1:PC_1$.

1972 Dutch Mathematical Olympiad, 1

Prove that for every $n \in N$, $n > 6$, every equilateral triangle can be divided into $n$ pieces, which are also equilateral triangles.

1998 Chile National Olympiad, 6

Given an equilateral triangle, cut it into four polygonal shapes so that, reassembled appropriately, these figures form a square.

1976 All Soviet Union Mathematical Olympiad, 230

Let us call "[i]big[/i]" a triangle with all sides longer than $1$. Given a equilateral triangle with all the sides equal to $5$. Prove that: a) You can cut $100$ [i]big [/i] triangles out of given one. b) You can divide the given triangle onto $100$ [i]big [/i] nonintersecting ones fully covering the initial one. c) The same as b), but the triangles either do not have common points, or have one common side, or one common vertex. d) The same as c), but the initial triangle has the side $3$.

2007 Singapore Junior Math Olympiad, 2

Equilateral triangles $ABE$ and $BCF$ are erected externally onthe sidess $AB$ and $BC$ of a parallelogram $ABCD$. Prove that $\vartriangle DEF$ is equilateral.

2008 Postal Coaching, 5

Consider the triangle $ABC$ and the points $D \in (BC),E \in (CA), F \in (AB)$, such that $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}$. Prove that if the circumcenters of triangles $DEF$ and $ABC$ coincide, then the triangle $ABC$ is equilateral.

1946 Moscow Mathematical Olympiad, 107

Given points $A, B, C$ on a line, equilateral triangles $ABC_1$ and $BCA_1$ constructed on segments $AB$ and $BC$, and midpoints $M$ and $N$ of $AA_1$ and $CC_1$, respectively. Prove that $\vartriangle BMN$ is equilateral. (We assume that $B$ lies between $A$ and $C$, and points $A_1$ and $C_1$ lie on the same side of line $AB$)

Denmark (Mohr) - geometry, 2012.5

In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.

2016 Ecuador NMO (OMEC), 3

Let $A, B, C, D$ be four different points on a line $\ell$, such that $AB = BC = CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points on the plane such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the measure of the angle $\angle MBN$.

2014 Oral Moscow Geometry Olympiad, 5

Given a regular triangle $ABC$, whose area is $1$, and the point $P$ on its circumscribed circle. Lines $AP, BP, CP$ intersect, respectively, lines $BC, CA, AB$ at points $A', B', C'$. Find the area of the triangle $A'B'C'$.

Kyiv City MO 1984-93 - geometry, 1991.7.4

Given a circle, point $C$ on it and point $A$ outside the circle. The equilateral triangle $ACP$ is constructed on the segment $AC$. Point $C$ moves along the circle. What trajectory will the point $P$ describe?

2018 Romania National Olympiad, 3

On the sides $[AB]$ and $[BC]$ of the parallelogram $ABCD$ are constructed the equilateral triangles $ABE$ and $BCF,$ so that the points $D$ and $E$ are on the same side of the line $AB$, and $F$ and $D$ on different sides of the line $BC$. If the points $E,D$ and $F$ are collinear, then prove that $ABCD$ is rhombus.

1998 Belarus Team Selection Test, 3

Let $ABCDEF$ be a convex hexagon such that $BCEF$ is a parallelogram and $ABF$ an equilateral triangle. Given that $BC = 1, AD = 3, CD+DE = 2$, compute the area of $ABCDEF$

Novosibirsk Oral Geo Oly VII, 2019.2

Kikoriki live on the shores of a pond in the form of an equilateral triangle with a side of $600$ m, Krash and Wally live on the same shore, $300$ m from each other. In summer, Dokko to Krash walk $900$ m, and Wally to Rosa - also $900$ m. Prove that in winter, when the pond freezes and it will be possible to walk directly on the ice, Dokko will walk as many meters to Krash as Wally to Rosa. [url=https://en.wikipedia.org/wiki/Kikoriki]about Kikoriki/GoGoRiki / Smeshariki [/url]

Ukrainian TYM Qualifying - geometry, V.8

Let $X$ be a point inside an equilateral triangle $ABC$ such that $BX+CX <3 AX$. Prove that $$3\sqrt3 \left( \cot \frac{\angle AXC}{2}+ \cot \frac{\angle AXB}{2}\right) +\cot \frac{\angle AXC}{2} \cot \frac{\angle AXB}{2} >5$$

1964 Czech and Slovak Olympiad III A, 4

Points $A, S$ are given in plane such that $AS = a > 0$ as well as positive numbers $b, c$ satisfying $b < a < c$. Construct an equilateral triangle $ABC$ with the property $BS = b$, $CS = c$. Discuss conditions of solvability.