This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 100

2004 Korea Junior Math Olympiad, 4

$ABCD$ is a cyclic quadrilateral inscribed in circle $O$. Let $O_1$ be the $A$-excenter of $ABC$ and $O_2$ the $A$-excenter of $ABD$. Show that $A, B, O_1, O_2$ is concyclic, and $O$ passes through the center of $(ABO_1O_2)$. Recall that for concyclic $X, Y, Z, W$, the notation $(XYZW)$ denotes the circumcircle of $XYZW$.

2014 Bosnia And Herzegovina - Regional Olympiad, 3

Tags: ratio , geometry , excircle
Excircle of triangle $ABC$ to side $AB$ of triangle $ABC$ touches side $AB$ in point $D$. Determine ratio $AD : BD$ if $\angle CAB = 2 \angle ADC$

2018 India IMO Training Camp, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2018 Thailand TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2018 Germany Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2018 Morocco TST., 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2022 3rd Memorial "Aleksandar Blazhevski-Cane", P4

Let $ABC$ be an acute triangle with incircle $\omega$, incenter $I$, and $A$-excircle $\omega_{a}$. Let $\omega$ and $\omega_{a}$ meet $BC$ at $X$ and $Y$, respectively. Let $Z$ be the intersection point of $AY$ and $\omega$ which is closer to $A$. The point $H$ is the foot of the altitude from $A$. Show that $HZ$, $IY$ and $AX$ are concurrent. [i]Proposed by Nikola Velov[/i]

2019 Oral Moscow Geometry Olympiad, 6

In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.

2022 AMC 12/AHSME, 25

A circle with integer radius $r$ is centered at $(r, r)$. Distinct line segments of length $c_i$ connect points $(0, a_i)$ to $(b_i, 0)$ for $1 \le i \le 14$ and are tangent to the circle, where $a_i$, $b_i$, and $c_i$ are all positive integers and $c_1 \le c_2 \le \cdots \le c_{14}$. What is the ratio $\frac{c_{14}}{c_1}$ for the least possible value of $r$? $\textbf{(A)} ~\frac{21}{5} \qquad\textbf{(B)} ~\frac{85}{13} \qquad\textbf{(C)} ~7 \qquad\textbf{(D)} ~\frac{39}{5} \qquad\textbf{(E)} ~17 $

1992 All Soviet Union Mathematical Olympiad, 571

$ABCD$ is a parallelogram. The excircle of $ABC$ opposite $A$ has center $E$ and touches the line $AB$ at $X$. The excircle of $ADC$ opposite $A$ has center $F$ and touches the line $AD$ at $Y$. The line $FC$ meets the line$ AB$ at $W$, and the line $EC$ meets the line $AD$ at $Z$. Show that $WX = YZ$.

1997 Tournament Of Towns, (557) 2

Let $a$ and $b$ be two sides of a triangle. How should the third side $c$ be chosen so that the points of contact of the incircle and the excircle with side $c$ divide that side into three equal segments? (The excircle corresponding to the side $c$ is the circle which is tangent to the side $c$ and to the extensions of the sides $a$ and $b$.) (Folklore)

Russian TST 2018, P2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2017 Bulgaria EGMO TST, 2

Let $ABC$ be a triangle with incenter $I$. The line $AI$ intersects $BC$ and the circumcircle of $ABC$ at the points $T$ and $S$, respectively. Let $K$ and $L$ be the incenters of $SBT$ and $SCT$, respectively, $M$ be the midpoint of $BC$ and $P$ be the reflection of $I$ with respect to $KL$. a) Prove that $M$, $T$, $K$ and $L$ are concyclic. b) Determine the measure of $\angle BPC$.

Russian TST 2018, P1

Let $I{}$ be the incircle of the triangle $ABC$. Let $A_1, B_1$ and $C_1$ be the midpoints of the sides $BC, CA$ and $AB$ respectively. The point $X{}$ is symmetric to $I{}$ with respect to $A_1$. The line $\ell$ parallel to $BC$ and passing through $X{}$ intersects the lines $A_1B_1$ and $A_1C_1$ at $M{}$ and $N{}$ respectively. Prove that one of the excenters of the triangle $ABC$ lies on the $A_1$-excircle of the triangle $A_1MN$.

II Soros Olympiad 1995 - 96 (Russia), 11.9

Tags: excircle , geometry
In triangle $ABC$, the side $BC = a$ and the radius $r$ of the circle tangent to the side BC and the extensions of $AB$ and $AC$ ($A$-excircle) are known. It is also known that inside the triangle there is a point $M$ such that $$BC - AM = CA - BM = AB - CM$$ Find the radius of the circle inscribed in the triangle $BMC$.

Russian TST 2021, P1

Tags: excircle , geometry
A point $P{}$ is considered on the incircle of the triangle $ABC$. We draw the tangent segments from $P{}$ to the three excircles of $ABC$. Prove that from the obtained three tangent segments it is possible to make a right triangle if and only if the point $P{}$ lies on one of the lines connecting two of the midpoints of the sides of $ABC$.

2008 Bulgarian Autumn Math Competition, Problem 12.2

Let $ABC$ be a triangle, such that the midpoint of $AB$, the incenter and the touchpoint of the excircle opposite $A$ with $\overline{AC}$ are collinear. Find $AB$ and $BC$ if $AC=3$ and $\angle ABC=60^{\circ}$.

2015 IFYM, Sozopol, 6

In $\Delta ABC$ points $A_1$, $B_1$, and $C_1$ are the tangential points of the excircles of $ABC$ with its sides. a) Prove that $AA_1$, $BB_1$, and $CC_1$ intersect in one point $N$. b) If $AC+BC=3AB$, prove that the center of the inscribed circle of $ABC$, its tangential point with $AB$, and the point $N$ are collinear.

2000 Saint Petersburg Mathematical Olympiad, 10.6

One of the excircles of triangle $ABC$ is tangent to the side $AB$ and to the extensions of sides $CA$ and $CB$ at points $C_1$, $B_1$ and $A_1$ respectively. Another excircle is tangent to side $AB$ and to the extensions of sides $BA$ and $BC$ at points $B_2$, $C_2$ and $A_2$ respectively. Line $A_1B_1$ and $A_2B_2$ intersect at point $P$,. lines $A_1C_1$ and $A_2C_2$ intersect at point $Q$. Prove that the points $A$, $P$, $Q$ are collinear [I]Proposed by S. Berlov[/i]

2016 USA Team Selection Test, 2

Let $ABC$ be a scalene triangle with circumcircle $\Omega$, and suppose the incircle of $ABC$ touches $BC$ at $D$. The angle bisector of $\angle A$ meets $BC$ and $\Omega$ at $E$ and $F$. The circumcircle of $\triangle DEF$ intersects the $A$-excircle at $S_1$, $S_2$, and $\Omega$ at $T \neq F$. Prove that line $AT$ passes through either $S_1$ or $S_2$. [i]Proposed by Evan Chen[/i]

2017 IMO Shortlist, G4

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2022 Taiwan TST Round 2, 3

Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.

2018 Yasinsky Geometry Olympiad, 4

Let $I_a$ be the point of the center of an ex-circle of the triangle $ABC$, which touches the side $BC$ . Let $W$ be the intersection point of the bisector of the angle $\angle A$ of the triangle $ABC$ with the circumcircle of the triangle $ABC$. Perpendicular from the point $W$ on the straight line $AB$, intersects the circumcircle of $ABC$ at the point $P$. Prove, that if the points $B, P, I_a$ lie on the same line, then the triangle $ABC$ is isosceles. (Mykola Moroz)

2019 Czech and Slovak Olympiad III A, 4

Let be $ABC$ an acute-angled triangle. Consider point $P$ lying on the opposite ray to the ray $BC$ such that $|AB|=|BP|$. Similarly, consider point $Q$ on the opposite ray to the ray $CB$ such that $|AC|=|CQ|$. Denote $J$ the excenter of $ABC$ with respect to $A$ and $D,E$ tangent points of this excircle with the lines $AB$ and $AC$, respectively. Suppose that the opposite rays to $DP$ and $EQ$ intersect in $F\neq J$. Prove that $AF\perp FJ$.

2024 Bangladesh Mathematical Olympiad, P5

Let $I$ be the incenter of $\triangle ABC$ and $P$ be a point such that $PI$ is perpendicular to $BC$ and $PA$ is parallel to $BC$. Let the line parallel to $BC$, which is tangent to the incircle of $\triangle ABC$, intersect $AB$ and $AC$ at points $Q$ and $R$ respectively. Prove that $\angle BPQ = \angle CPR$.