This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1967 IMO Longlists, 40

Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$

2022 Taiwan TST Round 1, G

Two triangles $ABC$ and $A'B'C'$ are on the plane. It is known that each side length of triangle $ABC$ is not less than $a$, and each side length of triangle $A'B'C'$ is not less than $a'$. Prove that we can always choose two points in the two triangles respectively such that the distance between them is not less than $\sqrt{\dfrac{a^2+a'^2}{3}}$.

2011 QEDMO 8th, 5

$9$ points are given in the interior of the unit square. Prove there exists a triangle of area $\le \frac18$ whose vertices are three of the points.

Ukrainian TYM Qualifying - geometry, X.12

Inside the convex polygon $A_1A_2...A_n$ , there is a point $M$ such that $\sum_{k=1}^n \overrightarrow {A_kM} = \overrightarrow{0}$. Prove that $nP\ge 4d$, where $P$ is the perimeter of the polygon, and $d=\sum_{k=1}^n |\overrightarrow {A_kM}|$ . Investigate the question of the achievement of equality in this inequality.

1970 Spain Mathematical Olympiad, 8

There is a point $M$ inside a circle, at a distance $OM = d$ of the center $O$. Two chords $AB$ and $CD$ are traced through $M$ that form a right angle . Join $A$ with $C$ and $B$ with $D$. Determine the cosine of the angle that must form the chord $AB$ with $OM$ so that the sum of the areas of the triangles $AMC$ and $BMD$ be minimal.

1988 Greece National Olympiad, 3

Bisectors of $\angle BAC$, $\angle CAD$ in a rectangle $ABCD$ , intersect the sides $BC$, $CD$ at points $M$ and $N$ resp. Prove that $\frac{(MB)}{(MC)}+\frac{(ND)}{(NC)}>1$

2003 Bosnia and Herzegovina Junior BMO TST, 4

In the trapezoid $ABCD$ ($AB \parallel DC$) the bases have lengths $a$ and $c$ ($c < a$), while the other sides have lengths $b$ and $d$. The diagonals are of lengths $m$ and $n$. It is known that $m^2 + n^2 = (a + c)^2$. a) Find the angle between the diagonals of the trapezoid. b) Prove that $a + c < b + d$. c) Prove that $ac < bd$.

Kyiv City MO Juniors Round2 2010+ geometry, 2017.7.4

On the sides $AD$ and $BC$ of a rectangle $ABCD$ select points $M, N$ and $P, Q$ respectively such that $AM = MN = ND = BP = PQ = QC$. On segment $QC$ selected point $X$, different from the ends of the segment. Prove that the perimeter of $\vartriangle ANX$ is more than the perimeter of $\vartriangle MDX$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.3

It is known that in the triangle $ABC$, $ 2 \angle BAC + 3 \angle ABC= 180^o$. Prove that $4(BC + CA)< 5AB$.

1979 IMO Shortlist, 13

Show that $\frac{20}{60} <\sin 20^{\circ} < \frac{21}{60}.$

2012 CHMMC Spring, 2

A convex octahedron in Cartesian space contains the origin in its interior. Two of its vertices are on the $x$-axis, two are on the $y$-axis, and two are on the $z$-axis. One triangular face $F$ has side lengths $\sqrt{17}$, $\sqrt{37}$, $\sqrt{52}$. A second triangular face $F_0$ has side lengths $\sqrt{13}$, $\sqrt{29}$, $\sqrt{34}$. What is the minimum possible volume of the octahedron?

2019 BMT Spring, 16

Let $ABC$ be a triangle with $AB = 26$, $BC = 51$, and $CA = 73$, and let $O$ be an arbitrary point in the interior of $\vartriangle ABC$. Lines $\ell_1$, $\ell_2$, and $\ell_3$ pass through $O$ and are parallel to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. The intersections of $\ell_1$, $\ell_2$, and $\ell_3$ and the sides of $\vartriangle ABC$ form a hexagon whose area is $A$. Compute the minimum value of $A$.

2010 239 Open Mathematical Olympiad, 7

You are given a convex polygon with perimeter $24\sqrt{3} + 4\pi$. If there exists a pair of points dividing the perimeter in half such that the distance between them is equal to $24$, Prove that there exists a pair of points dividing the perimeter in half such that the distance between them does not exceed $12$.

2021 Oral Moscow Geometry Olympiad, 5

The trapezoid is inscribed in a circle. Prove that the sum of distances from any point of the circle to the midpoints of the lateral sides are not less than the diagonal of the trapezoid.

Kyiv City MO 1984-93 - geometry, 1984.9.2

The polygon $P$, cut out of paper, is bent in a straight line and both halves are glued. Can the perimeter of the polygon $Q$ obtained by gluing be larger than the perimeter of the polygon $P$?

1967 IMO, 1

The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only \[a\le\cos A+\sqrt3\sin A.\]

1973 Dutch Mathematical Olympiad, 1

Given is a triangle $ABC$, $\angle C = 60^o$, $R$ the midpoint of side $AB$. There exist a point $P$ on the line $BC$ and a point $Q$ on the line $AC$ such that the perimeter of the triangle $PQR$ is minimal. a) Prove that and also indicate how the points $P$ and $Q$ can be constructed. b) If $AB = c$, $AC = b$, $BC = a$, then prove that the perimeter of the triangle $PQR$ equals $\frac12\sqrt{3c^2+6ab}$ .

V Soros Olympiad 1998 - 99 (Russia), 10.9

A triangle of area $1$ is cut out of paper. Prove that it can be bent along a straight segment so that the area of the resulting figure is less than $s_0$, where $s_0=\frac{\sqrt5-1}{2}$. Note. The value $s_0$ specified in the condition can be reduced (the smallest value of$s_0$ is unknown to the authors of the problem). If you manage to do this (and justify it), write.

2018 German National Olympiad, 4

a) Let $a,b$ and $c$ be side lengths of a triangle with perimeter $4$. Show that \[a^2+b^2+c^2+abc<8.\] b) Is there a real number $d<8$ such that for all triangles with perimeter $4$ we have \[a^2+b^2+c^2+abc<d \quad\] where $a,b$ and $c$ are the side lengths of the triangle?

2019 Nordic, 2

Let $a, b, c $ be the side lengths of a right angled triangle with c > a, b. Show that $$3<\frac{c^3-a^3-b^3}{c(c-a)(c-b)}\leq \sqrt{2}+2.$$

1989 Poland - Second Round, 3

Given is a trihedral angle $ OABC $ with a vertex $ O $ and a point $ P $ in its interior. Let $ V $ be the volume of a parallelepiped with two vertices at points $ O $ and $ P $, whose three edges are contained in the rays $ \overrightarrow{OA} $, $ \overrightarrow{OB} $, $ \overrightarrow{OC} $. Calculate the minimum volume of a tetrahedron whose three faces are contained in the faces of the trihedral angle $OABC$ and the fourth face contains the point $P$.

Ukrainian TYM Qualifying - geometry, XII.17

Given a triangle $ABC$, inside which the point $M$ is marked. On the sides $BC,CA$ and $AB$ the following points $A_1,B_1$ and $C_1$ are chosen, respectively, that $MA_1 \parallel CA$, $MB_1 \parallel AB$, $MC_1 \parallel BC$. Let S be the area of ​​triangle $ABC, Q_M$ be the area of ​​the triangle $A_1 B_1 C_1$. a) Prove that if the triangle $ABC$ is acute, and M is the point of intersection of its altitudes , then $3Q_M \le S$. Is there such a number $k> 0$ that for any acute-angled triangle $ABC$ and the point $M$ of intersection of its altitudes, such thatthe inequality $Q_M> k S$ holds? b) For cases where the point $M$ is the point of intersection of the medians, the center of the inscribed circle, the center of the circumcircle, find the largest $k_1> 0$ and the smallest $k_2> 0$ such that for an arbitrary triangle $ABC$, holds the inequality $k_1S \le Q_M\le k_2S$ (for the center of the circumscribed circle, only acute-angled triangles $ABC$ are considered).

1992 Tournament Of Towns, (342) 4

(a) In triangle $ABC$, angle $A$ is greater than angle $B$. Prove that the length of side $BC$ is greater than half the length of side $AB$. (b) In the convex quadrilateral $ABCD$, the angle at $A$ is greater than the angle at $C$ and the angle at $D$ is greater than the angle at $B$. Prove that the length of side $BC$ is greater than half of the length of side $AD$. (F Nazarov)

2006 MOP Homework, 4

Let $ABC$ be a right triangle with$ \angle A = 90^o$. Point $D$ lies on side $BC$ such that $\angle BAD = \angle CAD$. Point $I_a$ is the excenter of the triangle opposite $A$. Prove that $\frac{AD}{DI_a } \le \sqrt{2} -1$

1994 Tournament Of Towns, (432) 2

Prove that one can construct two triangles from six edges of an arbitrary tetrahedron. (VV Proizvolov)