Found problems: 1581
2006 Estonia Math Open Senior Contests, 6
Kati cut two equal regular $ n\minus{}gons$ out of paper. To the vertices of both $ n\minus{}gons$, she wrote the numbers 1 to $ n$ in some order. Then she stabbed a needle through the centres of these $ n\minus{}gons$ so that they could be rotated with respect to each other. Kati noticed that there is a position where the numbers at each pair of aligned vertices are different. Prove that the $ n\minus{}gons$ can be rotated to a position where at least two pairs of aligned vertices contain equal numbers.
2000 Finnish National High School Mathematics Competition, 1
Two circles are externally tangent at the point $A$. A common tangent of the circles meets one circle at the point $B$ and another at the point $C$ ($B \ne C)$. Line segments $BD$ and $CE$ are diameters of the circles. Prove that the points $D, A$ and $C$ are collinear.
2003 Tournament Of Towns, 4
In a triangle $ABC$, let $H$ be the point of intersection of altitudes, $I$ the center of incircle, $O$ the center of circumcircle, $K$ the point where the incircle touches $BC$. Given that $IO$ is parallel to $BC$, prove that $AO$ is parallel to $HK$.
1999 Romania Team Selection Test, 12
Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.
2010 Tournament Of Towns, 5
A needle (a segment) lies on a plane. One can rotate it $45^{\circ}$ round any of its endpoints. Is it possible that after several rotations the needle returns to initial position with the endpoints interchanged?
2013 USA TSTST, 1
Let $ABC$ be a triangle and $D$, $E$, $F$ be the midpoints of arcs $BC$, $CA$, $AB$ on the circumcircle. Line $\ell_a$ passes through the feet of the perpendiculars from $A$ to $DB$ and $DC$. Line $m_a$ passes through the feet of the perpendiculars from $D$ to $AB$ and $AC$. Let $A_1$ denote the intersection of lines $\ell_a$ and $m_a$. Define points $B_1$ and $C_1$ similarly. Prove that triangle $DEF$ and $A_1B_1C_1$ are similar to each other.
2004 All-Russian Olympiad, 1
Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.
2008 China Team Selection Test, 1
Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.
Taiwan TST 2015 Round 1, 1
Let $ABC$ be a triangle and $M$ be the midpoint of $BC$, and let $AM$ meet the circumcircle of $ABC$ again at $R$. A line passing through $R$ and parallel to $BC$ meet the circumcircle of $ABC$ again at $S$. Let $U$ be the foot from $R$ to $BC$, and $T$ be the reflection of $U$ in $R$. $D$ lies in $BC$ such that $AD$ is an altitude. $N$ is the midpoint of $AD$. Finally let $AS$ and $MN$ meets at $K$. Prove that $AT$ bisector $MK$.
2010 Stanford Mathematics Tournament, 1
Find the reflection of the point $(11, 16, 22)$ across the plane $3x+4y+5z=7$.
1951 Moscow Mathematical Olympiad, 200
What figure can the central projection of a triangle be? (The center of the projection does not lie on the plane of the triangle.)
2010 Czech-Polish-Slovak Match, 3
Let $ABCD$ be a convex quadrilateral for which \[ AB+CD=\sqrt{2}\cdot AC\qquad\text{and}\qquad BC+DA=\sqrt{2}\cdot BD.\] Prove that $ABCD$ is a parallelogram.
2014 ELMO Shortlist, 11
Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$.
[i]Proposed by Yang Liu[/i]
IV Soros Olympiad 1997 - 98 (Russia), 9.5
Given triangle $ABC$. Find the locus of points $M$ such that there is a rotation with center at $M$ that takes $C$ to a certain point on side $AB$.
2011 All-Russian Olympiad, 3
Let $ABC$ be an equilateral triangle. A point $T$ is chosen on $AC$ and on arcs $AB$ and $BC$ of the circumcircle of $ABC$, $M$ and $N$ are chosen respectively, so that $MT$ is parallel to $BC$ and $NT$ is parallel to $AB$. Segments $AN$ and $MT$ intersect at point $X$, while $CM$ and $NT$ intersect in point $Y$. Prove that the perimeters of the polygons $AXYC$ and $XMBNY$ are the same.
2007 F = Ma, 21
If the rotational inertia of a sphere about an axis through the center of the sphere is $I$, what is the rotational inertia of another sphere that has the same density, but has twice the radius?
$ \textbf{(A)}\ 2I \qquad\textbf{(B)}\ 4I \qquad\textbf{(C)}\ 8I\qquad\textbf{(D)}\ 16I\qquad\textbf{(E)}\ 32I $
2014 Harvard-MIT Mathematics Tournament, 9
Two circles are said to be [i]orthogonal[/i] if they intersect in two points, and their tangents at either point of intersection are perpendicular. Two circles $\omega_1$ and $\omega_2$ with radii $10$ and $13$, respectively, are externally tangent at point $P$. Another circle $\omega_3$ with radius $2\sqrt2$ passes through $P$ and is orthogonal to both $\omega_1$ and $\omega_2$. A fourth circle $\omega_4$, orthogonal to $\omega_3$, is externally tangent to $\omega_1$ and $\omega_2$. Compute the radius of $\omega_4$.
1993 All-Russian Olympiad, 1
Find all quadruples of real numbers such that each of them is equal to the product of some two other numbers in the quadruple.
2010 ELMO Shortlist, 1
Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent.
[i]Carl Lian.[/i]
2003 Iran MO (3rd Round), 20
Suppose that $ M$ is an arbitrary point on side $ BC$ of triangle $ ABC$. $ B_1,C_1$ are points on $ AB,AC$ such that $ MB = MB_1$ and $ MC = MC_1$. Suppose that $ H,I$ are orthocenter of triangle $ ABC$ and incenter of triangle $ MB_1C_1$. Prove that $ A,B_1,H,I,C_1$ lie on a circle.
1989 China Team Selection Test, 4
Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.
2013 National Olympiad First Round, 9
Let $ABC$ be a triangle with $|AB|=18$, $|AC|=24$, and $m(\widehat{BAC}) = 150^\circ$. Let $D$, $E$, $F$ be points on sides $[AB]$, $[AC]$, $[BC]$, respectively, such that $|BD|=6$, $|CE|=8$, and $|CF|=2|BF|$. Let $H_1$, $H_2$, $H_3$ be the reflections of the orthocenter of triangle $ABC$ over the points $D$, $E$, $F$, respectively. What is the area of triangle $H_1H_2H_3$?
$
\textbf{(A)}\ 70
\qquad\textbf{(B)}\ 72
\qquad\textbf{(C)}\ 84
\qquad\textbf{(D)}\ 96
\qquad\textbf{(E)}\ 108
$
2014 NIMO Summer Contest, 14
Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Evan Chen[/i]
2013 Pan African, 3
Let $ABCDEF$ be a convex hexagon with $\angle A= \angle D$ and $\angle B=\angle E$ . Let $K$ and $L$
be the midpoints of the sides $AB$ and $DE$ respectively. Prove that the sum of the areas of triangles $FAK$, $KCB$ and $CFL$ is equal to half of the area of the hexagon if and only if
\[\frac{BC}{CD}=\frac{EF}{FA}.\]
2013 Sharygin Geometry Olympiad, 18
Let $AD$ be a bisector of triangle $ABC$. Points $M$ and $N$ are projections of $B$ and $C$ respectively to $AD$. The circle with diameter $MN$ intersects $BC$ at points $X$ and $Y$. Prove that $\angle BAX = \angle CAY$.