Found problems: 1581
2008 Dutch Mathematical Olympiad, 1
Suppose we have a square $ABCD$ and a point $S$ in the interior of this square.
Under homothety with centre $S$ and ratio of magnification $k > 1$, this square becomes another square $A'B'C'D'$.
Prove that the sum of the areas of the two quadrilaterals $A'ABB'$ and $C'CDD'$ are equal to the sum of the areas of the two quadrilaterals $B'BCC'$ and $D'DAA'$.
[asy]
unitsize(3 cm);
pair[] A, B, C, D;
pair S;
A[1] = (0,1);
B[1] = (0,0);
C[1] = (1,0);
D[1] = (1,1);
S = (0.3,0.6);
A[0] = interp(S,A[1],2/3);
B[0] = interp(S,B[1],2/3);
C[0] = interp(S,C[1],2/3);
D[0] = interp(S,D[1],2/3);
draw(A[0]--B[0]--C[0]--D[0]--cycle);
draw(A[1]--B[1]--C[1]--D[1]--cycle);
draw(A[1]--S, dashed);
draw(B[1]--S, dashed);
draw(C[1]--S, dashed);
draw(D[1]--S, dashed);
dot("$A$", A[0], N);
dot("$B$", B[0], SE);
dot("$C$", C[0], SW);
dot("$D$", D[0], SE);
dot("$A'$", A[1], NW);
dot("$B'$", B[1], SW);
dot("$C'$", C[1], SE);
dot("$D'$", D[1], NE);
dot("$S$", S, dir(270));
[/asy]
2012 IberoAmerican, 2
Let $ABC$ be a triangle, $P$ and $Q$ the intersections of the parallel line to $BC$ that passes through $A$ with the external angle bisectors of angles $B$ and $C$, respectively. The perpendicular to $BP$ at $P$ and the perpendicular to $CQ$ at $Q$ meet at $R$. Let $I$ be the incenter of $ABC$. Show that $AI = AR$.
1988 China Team Selection Test, 3
A polygon $\prod$ is given in the $OXY$ plane and its area exceeds $n.$ Prove that there exist $n+1$ points $P_{1}(x_1, y_1), P_{2}(x_2, y_2), \ldots, P_{n+1}(x_{n+1}, y_{n+1})$ in $\prod$ such that $\forall i,j \in \{1, 2, \ldots, n+1\}$, $x_j - x_i$ and $y_j - y_i$ are all integers.
2012 Online Math Open Problems, 24
In scalene $\triangle ABC$, $I$ is the incenter, $I_a$ is the $A$-excenter, $D$ is the midpoint of arc $BC$ of the circumcircle of $ABC$ not containing $A$, and $M$ is the midpoint of side $BC$. Extend ray $IM$ past $M$ to point $P$ such that $IM = MP$. Let $Q$ be the intersection of $DP$ and $MI_a$, and $R$ be the point on the line $MI_a$ such that $AR\parallel DP$. Given that $\frac{AI_a}{AI}=9$, the ratio $\frac{QM} {RI_a}$ can be expressed in the form $\frac{m}{n}$ for two relatively prime positive integers $m,n$. Compute $m+n$.
[i]Ray Li.[/i]
[hide="Clarifications"][list=1][*]"Arc $BC$ of the circumcircle" means "the arc with endpoints $B$ and $C$ not containing $A$".[/list][/hide]
2008 Balkan MO Shortlist, G2
Given a scalene acute triangle $ ABC$ with $ AC>BC$ let $ F$ be the foot of the altitude from $ C$. Let $ P$ be a point on $ AB$, different from $ A$ so that $ AF\equal{}PF$. Let $ H,O,M$ be the orthocenter, circumcenter and midpoint of $ [AC]$. Let $ X$ be the intersection point of $ BC$ and $ HP$. Let $ Y$ be the intersection point of $ OM$ and $ FX$ and let $ OF$ intersect $ AC$ at $ Z$. Prove that $ F,M,Y,Z$ are concyclic.
2006 QEDMO 3rd, 6
The incircle of a triangle $ABC$ touches its sides $BC$, $CA$, $AB$ at the points $X$, $Y$, $Z$, respectively. Let $X^{\prime}$, $Y^{\prime}$, $Z^{\prime}$ be the reflections of these points $X$, $Y$, $Z$ in the external angle bisectors of the angles $CAB$, $ABC$, $BCA$, respectively. Show that $Y^{\prime}Z^{\prime}\parallel BC$, $Z^{\prime}X^{\prime}\parallel CA$ and $X^{\prime}Y^{\prime}\parallel AB$.
2005 Vietnam Team Selection Test, 3
Find all functions $f: \mathbb{Z} \mapsto \mathbb{Z}$ satisfying the condition: $f(x^3 +y^3 +z^3 )=f(x)^3+f(y)^3+f(z)^3.$
2013 Nordic, 4
Let ${ABC}$ be an acute angled triangle, and ${H}$ a point in its interior. Let the reflections of ${H}$ through the sides ${AB}$ and ${AC}$ be called ${H_{c} }$ and ${H_{b} }$ , respectively, and let the reflections of H through the midpoints of these same sidesbe called ${H_{c}^{'} }$ and ${H_{b}^{'} }$, respectively. Show that the four points ${H_{b}, H_{b}^{'} , H_{c}}$, and ${H_{c}^{'} }$ are concyclic if and only if at least two of them coincide or ${H}$ lies on the altitude from ${A}$ in triangle ${ABC}$.
2001 Turkey Team Selection Test, 2
A circle touches to diameter $AB$ of a unit circle with center $O$ at $T$ where $OT>1$. These circles intersect at two different points $C$ and $D$. The circle through $O$, $D$, and $C$ meet the line $AB$ at $P$ different from $O$. Show that
\[|PA|\cdot |PB| = \dfrac {|PT|^2}{|OT|^2}.\]
2012 NIMO Problems, 8
A convex 2012-gon $A_1A_2A_3 \dots A_{2012}$ has the property that for every integer $1 \le i \le 1006$, $\overline{A_iA_{i+1006}}$ partitions the polygon into two congruent regions. Show that for every pair of integers $1 \le j < k \le 1006$, quadrilateral $A_jA_kA_{j+1006}A_{k+1006}$ is a parallelogram.
[i]Proposed by Lewis Chen[/i]
1985 Kurschak Competition, 3
We reflected each vertex of a triangle on the opposite side. Prove that the area of the triangle formed by these three reflection points is smaller than the area of the initial triangle multiplied by five.
2002 Cono Sur Olympiad, 2
Given a triangle $ABC$, with right $\angle A$, we know: the point $T$ of tangency of the circumference inscribed in $ABC$ with the hypotenuse $BC$, the point $D$ of intersection of the angle bisector of $\angle B$ with side AC and the point E of intersection of the angle bisector of $\angle C$ with side $AB$ . Describe a construction with ruler and compass for points $A$, $B$, and $C$. Justify.
2010 Sharygin Geometry Olympiad, 21
A given convex quadrilateral $ABCD$ is such that $\angle ABD + \angle ACD > \angle BAC + \angle BDC.$ Prove that
\[S_{ABD}+S_{ACD} > S_{BAC}+S_{BDC}.\]
2004 China Team Selection Test, 2
Two equal-radii circles with centres $ O_1$ and $ O_2$ intersect each other at $ P$ and $ Q$, $ O$ is the midpoint of the common chord $ PQ$. Two lines $ AB$ and $ CD$ are drawn through $ P$ ( $ AB$ and $ CD$ are not coincide with $ PQ$ ) such that $ A$ and $ C$ lie on circle $ O_1$ and $ B$ and $ D$ lie on circle $ O_2$. $ M$ and $ N$ are the mipoints of segments $ AD$ and $ BC$ respectively. Knowing that $ O_1$ and $ O_2$ are not in the common part of the two circles, and $ M$, $ N$ are not coincide with $ O$.
Prove that $ M$, $ N$, $ O$ are collinear.
2017 CentroAmerican, 1
$ABC$ is a right-angled triangle, with $\angle ABC = 90^{\circ}$. $B'$ is the reflection of $B$ over $AC$. $M$ is the midpoint of $AC$. We choose $D$ on $\overrightarrow{BM}$, such that $BD = AC$. Prove that $B'C$ is the angle bisector of $\angle MB'D$.
NOTE: An important condition not mentioned in the original problem is $AB<BC$. Otherwise, $\angle MB'D$ is not defined or $B'C$ is the external bisector.
2012 Turkey Junior National Olympiad, 2
In a convex quadrilateral $ABCD$, the diagonals are perpendicular to each other and they intersect at $E$. Let $P$ be a point on the side $AD$ which is different from $A$ such that $PE=EC.$ The circumcircle of triangle $BCD$ intersects the side $AD$ at $Q$ where $Q$ is also different from $A$. The circle, passing through $A$ and tangent to line $EP$ at $P$, intersects the line segment $AC$ at $R$. If the points $B, R, Q$ are concurrent then show that $\angle BCD=90^{\circ}$.
2009 Princeton University Math Competition, 8
Taotao wants to buy a bracelet. The bracelets have 7 different beads on them, arranged in a circle. Two bracelets are the same if one can be rotated or flipped to get the other. If she can choose the colors and placement of the beads, and the beads come in orange, white, and black, how many possible bracelets can she buy?
1975 Canada National Olympiad, 6
(i) 15 chairs are equally placed around a circular table on which are name cards for 15 guests. The guests fail to notice these cards until after they have sat down, and it turns out that no one is sitting in the correct seat. Prove that the table can be rotated so that at least two of the guests are simultaneously correctly seated.
(ii) Give an example of an arrangement in which just one of the 15 guests is correctly seated and for which no rotation correctly places more than one person.
2008 APMO, 1
Let $ ABC$ be a triangle with $ \angle A < 60^\circ$. Let $ X$ and $ Y$ be the points on the sides $ AB$ and $ AC$, respectively, such that $ CA \plus{} AX \equal{} CB \plus{} BX$ and $ BA \plus{} AY \equal{} BC \plus{} CY$ . Let $ P$ be the point in the plane such that the lines $ PX$ and $ PY$ are perpendicular to $ AB$ and $ AC$, respectively. Prove that $ \angle BPC < 120^\circ$.
2011 Federal Competition For Advanced Students, Part 2, 3
Two circles $k_1$ and $k_2$ with radii $r_1$ and $r_2$ touch each outside at point $Q$. The other endpoints of the diameters through $Q$ are $P$ on $k_1$ and $R$ on $k_2$.
We choose two points $A$ and $B$, one on each of the arcs $PQ$ of $k_1$. ($PBQA$ is a convex quadrangle.)
Further, let $C$ be the second point of intersection of the line $AQ$ with $k_2$ and let $D$ be the second point of intersection of the line $BQ$ with $k_2$.
The lines $PB$ and $RC$ intersect in $U$ and the lines $PA$ and $RD$ intersect in $V$ .
Show that there is a point $Z$ that lies on all of these lines $UV$.
2007 Romania Team Selection Test, 3
Let $A_{1}A_{2}\ldots A_{2n}$ be a convex polygon and let $P$ be a point in its interior such that it doesn't lie on any of the diagonals of the polygon. Prove that there is a side of the polygon such that none of the lines $PA_{1}$, $\ldots$, $PA_{2n}$ intersects it in its interior.
1983 AIME Problems, 11
The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All other edges have length $s$. Given that $s = 6 \sqrt{2}$, what is the volume of the solid?
[asy]
import three;
size(170);
pathpen = black+linewidth(0.65);
pointpen = black;
currentprojection = perspective(30,-20,10);
real s = 6 * 2^.5;
triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6);
draw(F--B--C--F--E--A--B);
draw(A--D--E, dashed);
draw(D--C, dashed);
label("$2s$", (s/2, s/2, 6), N);
label("$s$", (s/2, 0, 0), SW);
[/asy]
2021 Indonesia TST, G
Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.
2010 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle in which $\angle A = 60^\circ$. Let $BE$ and $CF$ be the bisectors of $\angle B$ and $\angle C$ with $E$ on $AC$ and $F$ on $AB$. Let $M$ be the reflection of $A$ in line $EF$. Prove that $M$ lies on $BC$.
2014 NIMO Problems, 1
Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $CA=15$. Let $D$ be the point inside triangle $ABC$ with the property that $\overline{BD} \perp \overline{CD}$ and $\overline{AD} \perp \overline{BC}$. Then the length $AD$ can be expressed in the form $m-\sqrt{n}$, where $m$ and $n$ are positive integers. Find $100m+n$.
[i]Proposed by Michael Ren[/i]