This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2010 Stars Of Mathematics, 2

Let $ABCD$ be a square and let the points $M$ on $BC$, $N$ on $CD$, $P$ on $DA$, be such that $\angle (AB,AM)=x,\angle (BC,MN)=2x,\angle (CD,NP)=3x$. 1) Show that for any $0\le x\le 22.5$, such a configuration uniquely exists, and that $P$ ranges over the whole segment $DA$; 2) Determine the number of angles $0\le x\le 22.5$ for which$\angle (DA,PB)=4x$. (Dan Schwarz)

2007 IMC, 1

Let $ f : \mathbb{R}\to \mathbb{R}$ be a continuous function. Suppose that for any $ c > 0$, the graph of $ f$ can be moved to the graph of $ cf$ using only a translation or a rotation. Does this imply that $ f(x) = ax+b$ for some real numbers $ a$ and $ b$?

2013 Online Math Open Problems, 6

Circle $S_1$ has radius $5$. Circle $S_2$ has radius $7$ and has its center lying on $S_1$. Circle $S_3$ has an integer radius and has its center lying on $S_2$. If the center of $S_1$ lies on $S_3$, how many possible values are there for the radius of $S_3$? [i]Ray Li[/i]

1972 Bundeswettbewerb Mathematik, 2

In a plane, there are $n \geq 3$ circular beer mats $B_{1}, B_{2}, ..., B_{n}$ of equal size. $B_{k}$ touches $B_{k+1}$ ($k=1,2,...,n$); $B_{n+1}=B_{1}$. The beer mats are placed such that another beer mat $B$ of equal size touches all of them in the given order if rolling along the outside of the chain of beer mats. How many rotations $B$ makes untill it returns to it's starting position¿

MathLinks Contest 7th, 5.2

Let $ A^{\prime}$ be an arbitrary point on the side $ BC$ of a triangle $ ABC$. Denote by $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ the circles simultanously tangent to $ AA^{\prime}$, $ A^{\prime}B$, $ \Gamma$ and $ AA^{\prime}$, $ A^{\prime}C$, $ \Gamma$, respectively, where $ \Gamma$ is the circumcircle of $ ABC$. Prove that $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ are congruent if and only if $ AA^{\prime}$ passes through the Nagel point of triangle $ ABC$. ([i]If $ M,N,P$ are the points of tangency of the excircles of the triangle $ ABC$ with the sides of the triangle $ BC$, $ CA$ and $ AB$ respectively, then the Nagel point of the triangle is the intersection point of the lines $ AM$, $ BN$ and $ CP$[/i].)

2014 Mexico National Olympiad, 4

Problem 4 Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.

2017 All-Russian Olympiad, 8

In a non-isosceles triangle $ABC$,$O$ and $I$ are circumcenter and incenter,respectively.$B^\prime$ is reflection of $B$ with respect to $OI$ and lies inside the angle $ABI$.Prove that the tangents to circumcirle of $\triangle BB^\prime I$ at $B^\prime$,$I$ intersect on $AC$. (A. Kuznetsov)

2014 Turkey Team Selection Test, 2

A circle $\omega$ cuts the sides $BC,CA,AB$ of the triangle $ABC$ at $A_1$ and $A_2$; $B_1$ and $B_2$; $C_1$ and $C_2$, respectively. Let $P$ be the center of $\omega$. $A'$ is the circumcenter of the triangle $A_1A_2P$, $B'$ is the circumcenter of the triangle $B_1B_2P$, $C'$ is the circumcenter of the triangle $C_1C_2P$. Prove that $AA', BB'$ and $CC'$ concur.

2025 ISI Entrance UGB, 7

Consider a ball that moves inside an acute-angled triangle along a straight line, unit it hits the boundary, which is when it changes direction according to the mirror law, just like a ray of light (angle of incidence = angle of reflection). Prove that there exists a triangular periodic path for the ball, as pictured below. [asy] size(10cm); pen thickbrown = rgb(0.6, 0.2, 0); pen thickdark = rgb(0.2, 0, 0); pen dashedarrow = linetype("6 6"); pair A = (-1.14, 4.36), B = (-4.46, -1.28), C = (3.32, -2.78); pair D = (-1.479, -1.855), E = (0.727, 1.372), F = (-3.014, 1.176); draw(A--B--C--cycle, thickbrown); draw(A--B, thickdark); draw(B--C, thickdark); draw(C--A, thickdark); draw(D--F, dashedarrow, EndArrow(6)); draw(F--E, dashedarrow, EndArrow(6)); draw(E--D, dashedarrow, EndArrow(6)); dot(A); label("$A$", A, N); dot(B); label("$B$", B, dir(180)); dot(C); label("$C$", C, dir(330)); dot(D); label("$D$", D, S); dot(E); label("$E$", E, NE); dot(F); label("$F$", F, W); [/asy]

2011 Math Prize For Girls Problems, 20

Let $ABC$ be an equilateral triangle with each side of length 1. Let $X$ be a point chosen uniformly at random on side $\overline{AB}$. Let $Y$ be a point chosen uniformly at random on side $\overline{AC}$. (Points $X$ and $Y$ are chosen independently.) Let $p$ be the probability that the distance $XY$ is at most $\dfrac{1}{\sqrt[4]{3}}\,$. What is the value of $900p$, rounded to the nearest integer?

1989 Canada National Olympiad, 2

Let $ ABC$ be a right angled triangle of area 1. Let $ A'B'C'$ be the points obtained by reflecting $ A,B,C$ respectively, in their opposite sides. Find the area of $ \triangle A'B'C'.$

2005 MOP Homework, 2

Let $ABC$ be a triangle, and let $D$ be a point on side $AB$. Circle $\omega_1$ passes through $A$ and $D$ and is tangent to line $AC$ at $A$. Circle $\omega_2$ passes through $B$ and $D$ and is tangent to line $BC$ at $B$. Circles $\omega_1$ and $\omega_2$ meet at $D$ and $E$. Point $F$ is the reflection of $C$ across the perpendicular bisector of $AB$. Prove that points $D$, $E$, and $F$ are collinear.

2011 Brazil Team Selection Test, 3

Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .

2007 Iran Team Selection Test, 3

Let $\omega$ be incircle of $ABC$. $P$ and $Q$ are on $AB$ and $AC$, such that $PQ$ is parallel to $BC$ and is tangent to $\omega$. $AB,AC$ touch $\omega$ at $F,E$. Prove that if $M$ is midpoint of $PQ$, and $T$ is intersection point of $EF$ and $BC$, then $TM$ is tangent to $\omega$. [i]By Ali Khezeli[/i]

2014 PUMaC Algebra A, 1

On the number line, consider the point $x$ that corresponds to the value $10$. Consider $24$ distinct integer points $y_1$, $y_2$, $\ldots$, $y_{24}$ on the number line such that for all $k$ such that $1\leq k\leq 12$, we have that $y_{2k-1}$ is the reflection of $y_{2k}$ across $x$. Find the minimum possible value of \[\textstyle\sum_{n=1}^{24}(|y_n-1|+|y_n+1|).\]

1997 IberoAmerican, 2

In a triangle $ABC$, it is drawn a circumference with center in the incenter $I$ and that meet twice each of the sides of the triangle: the segment $BC$ on $D$ and $P$ (where $D$ is nearer two $B$); the segment $CA$ on $E$ and $Q$ (where $E$ is nearer to $C$); and the segment $AB$ on $F$ and $R$ ( where $F$ is nearer to $A$). Let $S$ be the point of intersection of the diagonals of the quadrilateral $EQFR$. Let $T$ be the point of intersection of the diagonals of the quadrilateral $FRDP$. Let $U$ be the point of intersection of the diagonals of the quadrilateral $DPEQ$. Show that the circumcircle to the triangle $\triangle{FRT}$, $\triangle{DPU}$ and $\triangle{EQS}$ have a unique point in common.

2012 Today's Calculation Of Integral, 802

Let $k$ and $a$ are positive constants. Denote by $V_1$ the volume of the solid generated by a rotation of the figure enclosed by the curve $C: y=\frac{x}{x+k}\ (x\geq 0)$, the line $x=a$ and the $x$-axis around the $x$-axis, and denote by $V_2$ that of the solid by a rotation of the figure enclosed by the curve $C$, the line $y=\frac{a}{a+k}$ and the $y$-axis around the $y$-axis. Find the ratio $\frac{V_2}{V_1}.$

2014 Sharygin Geometry Olympiad, 19

Two circles $\omega_1$ and $\omega_2$ touch externally at point $P$.Let $A$ be a point on $\omega_2$ not lying on the line through the centres of the two circles.Let $AB$ and $AC$ be the tangents to $\omega_1$.Lines $BP$ and $CP$ meet $\omega_2$ for the second time at points $E$ and $F$.Prove that the line $EF$,the tangent to $\omega_2$ at $A$ and the common tangent at $P$ concur.

2008 Costa Rica - Final Round, 6

Let $ O$ be the circumcircle of a $ \Delta ABC$ and let $ I$ be its incenter, for a point $ P$ of the plane let $ f(P)$ be the point obtained by reflecting $ P'$ by the midpoint of $ OI$, with $ P'$ the homothety of $ P$ with center $ O$ and ratio $ \frac{R}{r}$ with $ r$ the inradii and $ R$ the circumradii,(understand it by $ \frac{OP}{OP'}\equal{}\frac{R}{r}$). Let $ A_1$, $ B_1$ and $ C_1$ the midpoints of $ BC$, $ AC$ and $ AB$, respectively. Show that the rays $ A_1f(A)$, $ B_1f(B)$ and $ C_1f(C)$ concur on the incircle.

2009 South africa National Olympiad, 2

Let $ABCD$ be a rectangle and $E$ the reflection of $A$ with respect to the diagonal $BD$. If $EB = EC$, what is the ratio $\frac{AD}{AB}$ ?

2010 Olympic Revenge, 3

Prove that there exists a set $S$ of lines in the three dimensional space satisfying the following conditions: $i)$ For each point $P$ in the space, there exist a unique line of $S$ containing $P$. $ii)$ There are no two lines of $S$ which are parallel.

2011 Croatia Team Selection Test, 3

Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.

2010 Contests, 2

Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram. Show that $\angle BPC > \angle BAC$.

Today's calculation of integrals, 868

In the coordinate space, define a square $S$, defined by the inequality $|x|\leq 1,\ |y|\leq 1$ on the $xy$-plane, with four vertices $A(-1,\ 1,\ 0),\ B(1,\ 1,\ 0),\ C(1,-1,\ 0), D(-1,-1,\ 0)$. Let $V_1$ be the solid by a rotation of the square $S$ about the line $BD$ as the axis of rotation, and let $V_2$ be the solid by a rotation of the square $S$ about the line $AC$ as the axis of rotation. (1) For a real number $t$ such that $0\leq t<1$, find the area of cross section of $V_1$ cut by the plane $x=t$. (2) Find the volume of the common part of $V_1$ and $V_2$.

1997 Turkey MO (2nd round), 2

In a triangle $ABC$, the inner and outer bisectors of the $\angle A$ meet the line $BC$ at $D$ and $E$, respectively. Let $d$ be a common tangent of the circumcircle $(O)$ of $\triangle ABC$ and the circle with diameter $DE$ and center $F$. The projections of the tangency points onto $FO$ are denoted by $P$ and $Q$, and the length of their common chord is denoted by $m$. Prove that $PQ = m$