Found problems: 1581
2012 All-Russian Olympiad, 2
The inscribed circle $\omega$ of the non-isosceles acute-angled triangle $ABC$ touches the side $BC$ at the point $D$. Suppose that $I$ and $O$ are the centres of inscribed circle and circumcircle of triangle $ABC$ respectively. The circumcircle of triangle $ADI$ intersects $AO$ at the points $A$ and $E$. Prove that $AE$ is equal to the radius $r$ of $\omega$.
1992 Dutch Mathematical Olympiad, 3
Consider the configuration of six squares as shown on the picture. Prove that the sum of the area of the three outer squares ($ I,II$ and $ III$) equals three times the sum of the areas of the three inner squares ($ IV,V$ and $ VI$).
2013 ELMO Shortlist, 2
Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent.
[i]Proposed by Michael Kural[/i]
2009 Putnam, A1
Let $ f$ be a real-valued function on the plane such that for every square $ ABCD$ in the plane, $ f(A)\plus{}f(B)\plus{}f(C)\plus{}f(D)\equal{}0.$ Does it follow that $ f(P)\equal{}0$ for all points $ P$ in the plane?
2012 Waseda University Entrance Examination, 5
Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$.
Answer the following questions:
(1) Illustrate $F$.
(2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.
1992 India National Olympiad, 5
Two circles $C_1$ and $C_2$ intersect at two distinct points $P, Q$ in a plane. Let a line passing through $P$ meet the circles $C_1$ and $C_2$ in $A$ and $B$ respectively. Let $Y$ be the midpoint of $AB$ and let $QY$ meet the cirlces $C_1$ and $C_2$ in $X$ and $Z$ respectively. Show that $Y$ is also the midpoint of $XZ$.
2013 NIMO Problems, 2
Square $\mathcal S$ has vertices $(1,0)$, $(0,1)$, $(-1,0)$ and $(0,-1)$. Points $P$ and $Q$ are independently selected, uniformly at random, from the perimeter of $\mathcal S$. Determine, with proof, the probability that the slope of line $PQ$ is positive.
[i]Proposed by Isabella Grabski[/i]
1991 AIME Problems, 12
Rhombus $PQRS$ is inscribed in rectangle $ABCD$ so that vertices $P$, $Q$, $R$, and $S$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB=15$, $BQ=20$, $PR=30$, and $QS=40$. Let $m/n$, in lowest terms, denote the perimeter of $ABCD$. Find $m+n$.
2010 Sharygin Geometry Olympiad, 18
A point $B$ lies on a chord $AC$ of circle $\omega.$ Segments $AB$ and $BC$ are diameters of circles $\omega_1$ and $\omega_2$ centered at $O_1$ and $O_2$ respectively. These circles intersect $\omega$ for the second time in points $D$ and $E$ respectively. The rays $O_1D$ and $O_2E$ meet in a point $F,$ and the rays $AD$ and $CE$ do in a point $G.$ Prove that the line $FG$ passes through the midpoint of the segment $AC.$
2006 All-Russian Olympiad, 4
Given a triangle $ ABC$. The angle bisectors of the angles $ ABC$ and $ BCA$ intersect the sides $ CA$ and $ AB$ at the points $ B_1$ and $ C_1$, and intersect each other at the point $ I$. The line $ B_1C_1$ intersects the circumcircle of triangle $ ABC$ at the points $ M$ and $ N$. Prove that the circumradius of triangle $ MIN$ is twice as long as the circumradius of triangle $ ABC$.
2006 Australia National Olympiad, 4
There are $n$ points on a circle, such that each line segment connecting two points is either red or blue.
$P_iP_j$ is red if and only if $P_{i+1} P_{j+1}$ is blue, for all distinct $i, j$ in $\left\{1, 2, ..., n\right\}$.
(a) For which values of $n$ is this possible?
(b) Show that one can get from any point on the circle to any other point, by doing a maximum of 3 steps, where one step is moving from a point to another point through a red segment connecting these points.
2005 USAMTS Problems, 5
Lisa and Bart are playing a game. A round table has $n$ lights evenly spaced around its circumference. Some of the lights are on and some of them off; the initial configuration is random. Lisa wins if she can get all of the lights turned on; Bart wins if he can prevent this from happening.
On each turn, Lisa chooses the positions at which to flip the lights, but before the lights are flipped, Bart, knowing Lisa’s choices, can rotate the table to any position that he chooses (or he can leave the table as is). Then the lights in the positions that Lisa chose are flipped: those that are off are turned on and those that are on are turned off.
Here is an example turn for $n = 5$ (a white circle indicates a light that is on, and a black
circle indicates a light that is off):
[asy]
size(250); defaultpen(linewidth(1)); picture p = new picture;
real r = 0.2; pair s1=(0,-4), s2=(0,-8); int[][] filled = {{1,2,3},{1,2,5},{2,3,4,5}};
draw(p,circle((0,0),1));
for(int i = 0; i < 5; ++i) {
pair P = dir(90-72*i); filldraw(p,circle(P,r),white); label(p,string(i+1),P,2*P,fontsize(10));
}
add(p); add(shift(s1)*p); add(shift(s2)*p);
for(int j = 0; j < 3; ++j)
for(int i = 0; i < filled[j].length; ++i)
filldraw(circle(dir(90-72*(filled[j][i]-1))+j*s1,r));
label("$\parbox{15em}{Initial Position.}$", (-4.5,0));
label("$\parbox{15em}{Lisa says ``1,3,4.'' \\ Bart rotates the table one \\ position counterclockwise. }$", (-4.5,0)+s1);
label("$\parbox{15em}{Lights in positions 1,3,4 are \\ flipped.}$", (-4.5,0)+s2);[/asy]
Lisa can take as many turns as she needs to win, or she can give up if it becomes clear
to her that Bart can prevent her from winning.
(a) Show that if $n = 7$ and initially at least one light is on and at least one light is off,
then Bart can always prevent Lisa from winning.
(b) Show that if $n = 8$, then Lisa can always win in at most 8 turns.
Russian TST 2021, P2
Let $ABCD$ be a cyclic quadrilateral. Points $K, L, M, N$ are chosen on $AB, BC, CD, DA$ such that $KLMN$ is a rhombus with $KL \parallel AC$ and $LM \parallel BD$. Let $\omega_A, \omega_B, \omega_C, \omega_D$ be the incircles of $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$.
Prove that the common internal tangents to $\omega_A$, and $\omega_C$ and the common internal tangents to $\omega_B$ and $\omega_D$ are concurrent.
2007 Iran MO (3rd Round), 4
Let $ ABC$ be a triangle, and $ D$ be a point where incircle touches side $ BC$. $ M$ is midpoint of $ BC$, and $ K$ is a point on $ BC$ such that $ AK\perp BC$. Let $ D'$ be a point on $ BC$ such that $ \frac{D'M}{D'K}=\frac{DM}{DK}$. Define $ \omega_{a}$ to be circle with diameter $ DD'$. We define $ \omega_{B},\omega_{C}$ similarly. Prove that every two of these circles are tangent.
2010 Iran MO (3rd Round), 1
Prove that the group of orientation-preserving symmetries of the cube is isomorphic to $S_4$ (the group of permutations of $\{1,2,3,4\}$).(20 points)
2009 China Girls Math Olympiad, 7
On a $ 10 \times 10$ chessboard, some $ 4n$ unit squares are chosen to form a region $ \mathcal{R}.$ This region $ \mathcal{R}$ can be tiled by $ n$ $ 2 \times 2$ squares. This region $ \mathcal{R}$ can also be tiled by a combination of $ n$ pieces of the following types of shapes ([i]see below[/i], with rotations allowed).
Determine the value of $ n.$
2012 Romanian Masters In Mathematics, 6
Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$.
[i](Russia) Fedor Ivlev[/i]
Today's calculation of integrals, 897
Find the volume $V$ of the solid formed by a rotation of the region enclosed by the curve $y=2^{x}-1$ and two lines $x=0,\ y=1$ around the $y$ axis.
2014 IPhOO, 6
A square plate has side length $L$ and negligible thickness. It is laid down horizontally on a table and is then rotating about the axis $\overline{MN}$ where $M$ and $N$ are the midpoints of two adjacent sides of the square. The moment of inertia of the plate about this axis is $kmL^2$, where $m$ is the mass of the plate and $k$ is a real constant. Find $k$.
[color=red]Diagram will be added to this post very soon. If you want to look at it temporarily, see the PDF.[/color]
[i]Problem proposed by Ahaan Rungta[/i]
2010 Iran MO (3rd Round), 5
In a triangle $ABC$, $I$ is the incenter. $D$ is the reflection of $A$ to $I$. the incircle is tangent to $BC$ at point $E$. $DE$ cuts $IG$ at $P$ ($G$ is centroid). $M$ is the midpoint of $BC$. prove that
a) $AP||DM$.(15 points)
b) $AP=2DM$. (10 points)
2014 AIME Problems, 10
Let $z$ be a complex number with $|z| = 2014$. Let $P$ be the polygon in the complex plane whose vertices are $z$ and every $w$ such that $\tfrac{1}{z+w} = \tfrac{1}{z} + \tfrac{1}{w}$. Then the area enclosed by $P$ can be written in the form $n\sqrt{3},$ where $n$ is an integer. Find the remainder when $n$ is divided by $1000$.
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
1979 IMO Longlists, 30
Let $M$ be a set of points in a plane with at least two elements. Prove that if $M$ has two axes of symmetry $g_1$ and $g_2$ intersecting at an angle $\alpha = q\pi$, where $q$ is irrational, then $M$ must be infinite.
2011 All-Russian Olympiad, 2
On side $BC$ of parallelogram $ABCD$ ($A$ is acute) lies point $T$ so that triangle $ATD$ is an acute triangle. Let $O_1$, $O_2$, and $O_3$ be the circumcenters of triangles $ABT$, $DAT$, and $CDT$ respectively. Prove that the orthocenter of triangle $O_1O_2O_3$ lies on line $AD$.
2011 Turkey MO (2nd round), 5
Let $M$ and $N$ be two regular polygonic area.Define $K(M,N)$ as the midpoints of segments $[AB]$ such that $A$ belong to $M$ and $B$ belong to $N$. Find all situations of $M$ and $N$ such that $K(M,N)$ is a regualr polygonic area too.