This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2009 Indonesia TST, 2

Tags: geometry
Let $ ABC$ be a triangle with $ \angle BAC\equal{}60^{\circ}$. The incircle of $ ABC$ is tangent to $ AB$ at $ D$. Construct a circle with radius $ DA$ and cut the incircle of $ ABC$ at $ E$. If $ AF$ is an altitude, prove that $ AE\ge AF$.

2017 Iran Team Selection Test, 1

$ABCD$ is a trapezoid with $AB \parallel CD$. The diagonals intersect at $P$. Let $\omega _1$ be a circle passing through $B$ and tangent to $AC$ at $A$. Let $\omega _2$ be a circle passing through $C$ and tangent to $BD$ at $D$. $\omega _3$ is the circumcircle of triangle $BPC$. Prove that the common chord of circles $\omega _1,\omega _3$ and the common chord of circles $\omega _2, \omega _3$ intersect each other on $AD$. [i]Proposed by Kasra Ahmadi[/i]

2009 Oral Moscow Geometry Olympiad, 5

Prove that any convex polyhedron has three edges that can be used to form a triangle. (Barbu Bercanu, Romania)

1967 All Soviet Union Mathematical Olympiad, 086

a) A lamp of a lighthouse enlights an angle of $90$ degrees. Prove that you can turn the lamps of four arbitrary posed lighthouses so, that all the plane will be enlightened. b) There are eight lamps in eight points of the space. Each can enlighten an octant (three-faced space polygon with three mutually orthogonal edges). Prove that you can turn them so, that all the space will be enlightened.

1985 IMO Longlists, 28

[i]a)[/i] Let $M$ be the set of the lengths of the edges of an octahedron whose sides are congruent quadrangles. Prove that $M$ has at most three elements. [i]b)[/i] Let an octahedron whose sides are congruent quadrangles be given. Prove that each of these quadrangles has two equal sides meeting at a common vertex.

2018 Cono Sur Olympiad, 5

Let $ABC$ be an acute-angled triangle with $\angle BAC = 60^{\circ}$ and with incenter $I$ and circumcenter $O$. Let $H$ be the point diametrically opposite(antipode) to $O$ in the circumcircle of $\triangle BOC$. Prove that $IH=BI+IC$.

2010 Kazakhstan National Olympiad, 2

On sides of convex quadrilateral $ABCD$ on external side constructed equilateral triangles $ABK, BCL, CDM, DAN$. Let $P,Q$- midpoints of $BL, AN$ respectively and $X$- circumcenter of $CMD$. Prove, that $PQ$ perpendicular to $KX$

1977 Kurschak Competition, 2

$ABC$ is a triangle with orthocenter $H$. The median from $A$ meets the circumcircle again at $A_1$, and $A_2$ is the reflection of $A_1$ in the midpoint of $BC$. The points$ B_2$ and $C_2$ are defined similarly. Show that $H$, $A_2$, $B_2$ and $C_2$ lie on a circle. [img]https://cdn.artofproblemsolving.com/attachments/f/1/192d14a0a7a9aa9ac7b38763e6ea6a4a95be55.png[/img]

2022 IFYM, Sozopol, 7

Given an acute-angled $\vartriangle ABC$ with orthocenter $H$ and altitude $CC_1$. Points $D, E$ and $F$ lie on the segments $AC$, $BC$ and $AB$ respectively, so that $DE \parallel AB$ and $EF \parallel AC$. Denote by $Q$ the symmetric point of $H$ wrt to the midpoint of $DE$. Let $BD \cap CF = P$. If $HP \parallel AB$, prove that the points $C_1, D, Q$ and $E$ lie on a circle.

2006 Mid-Michigan MO, 10-12

[b]p1.[/b] A right triangle has hypotenuse of length $12$ cm. The height corresponding to the right angle has length $7$ cm. Is this possible? [img]https://cdn.artofproblemsolving.com/attachments/0/e/3a0c82dc59097b814a68e1063a8570358222a6.png[/img] [b]p2.[/b] Prove that from any $5$ integers one can choose $3$ such that their sum is divisible by $3$. [b]p3.[/b] Two players play the following game on an $8\times 8$ chessboard. The first player can put a knight on an arbitrary square. Then the second player can put another knight on a free square that is not controlled by the first knight. Then the first player can put a new knight on a free square that is not controlled by the knights on the board. Then the second player can do the same, etc. A player who cannot put a new knight on the board loses the game. Who has a winning strategy? [b]p4.[/b] Consider a regular octagon $ABCDEGH$ (i.e., all sides of the octagon are equal and all angles of the octagon are equal). Show that the area of the rectangle $ABEF$ is one half of the area of the octagon. [img]https://cdn.artofproblemsolving.com/attachments/d/1/674034f0b045c0bcde3d03172b01aae337fba7.png[/img] [b]p5.[/b] Can you find a positive whole number such that after deleting the first digit and the zeros following it (if they are) the number becomes $24$ times smaller? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1967 IMO Shortlist, 6

Given a segment $AB$ of the length 1, define the set $M$ of points in the following way: it contains two points $A,B,$ and also all points obtained from $A,B$ by iterating the following rule: With every pair of points $X,Y$ the set $M$ contains also the point $Z$ of the segment $XY$ for which $YZ = 3XZ.$

2009 Iran Team Selection Test, 5

$ ABC$ is a triangle and $ AA'$ , $ BB'$ and $ CC'$ are three altitudes of this triangle . Let $ P$ be the feet of perpendicular from $ C'$ to $ A'B'$ , and $ Q$ is a point on $ A'B'$ such that $ QA \equal{} QB$ . Prove that : $ \angle PBQ \equal{} \angle PAQ \equal{} \angle PC'C$

Novosibirsk Oral Geo Oly VIII, 2017.1

Tags: geometry , grid , min
Petya and Vasya live in neighboring houses (see the plan in the figure). Vasya lives in the fourth entrance. It is known that Petya runs to Vasya by the shortest route (it is not necessary walking along the sides of the cells) and it does not matter from which side he runs around his house. Determine in which entrance he lives Petya . [img]https://cdn.artofproblemsolving.com/attachments/b/1/741120341a54527b179e95680aaf1c4b98ff84.png[/img]

2000 Saint Petersburg Mathematical Olympiad, 11.5

Let $AA_1$, $BB_1$, $CC_1$ be the altitudes of an acute angled triangle $ABC$. On the side $BC$ point $K$ is taken such that $\angle BB_1K=\angle A$. On the side $AB$ a point $M$ is taken such that $\angle BB_1M\angle C$. Let $L$ be the intersection of $BB_1$ and $A_1C_1$. Prove that the quadrilateral $B_1KLM$ is circumscribed. [I]Proposed by A. Khrabrov, D. Rostovski[/i]

2011 National Olympiad First Round, 17

Let $D$ be a point inside the equilateral triangle $\triangle ABC$ such that $|AD|=\sqrt{2}, |BD|=3, |CD|=\sqrt{5}$. $m(\widehat{ADB}) = ?$ $\textbf{(A)}\ 120^{\circ} \qquad\textbf{(B)}\ 105^{\circ} \qquad\textbf{(C)}\ 100^{\circ} \qquad\textbf{(D)}\ 95^{\circ} \qquad\textbf{(E)}\ 90^{\circ}$

2000 Chile National Olympiad, 6

With $76$ tiles, of which some are white, other blue and the remaining red, they form a rectangle of $4 \times 19$. Show that there is a rectangle, inside the largest, that has its vertices of the same color.

2012 Sharygin Geometry Olympiad, 3

A circle with center $I$ touches sides $AB,BC,CA$ of triangle $ABC$ in points $C_{1},A_{1},B_{1}$. Lines $AI, CI, B_{1}I$ meet $A_{1}C_{1}$ in points $X, Y, Z$ respectively. Prove that $\angle Y B_{1}Z = \angle XB_{1}Z$.

2018 Balkan MO Shortlist, G6

In a triangle $ABC$ with $AB=AC$, $\omega$ is the circumcircle and $O$ its center. Let $D$ be a point on the extension of $BA$ beyond $A$. The circumcircle $\omega_{1}$ of triangle $OAD$ intersects the line $AC$ and the circle $\omega$ again at points $E$ and $G$, respectively. Point $H$ is such that $DAEH$ is a parallelogram. Line $EH$ meets circle $\omega_{1}$ again at point $J$. The line through $G$ perpendicular to $GB$ meets $\omega_{1}$ again at point $N$ and the line through $G$ perpendicular to $GJ$ meets $\omega$ again at point $L$. Prove that the points $L, N, H, G$ lie on a circle.

1991 Turkey Team Selection Test, 1

Tags: ratio , geometry
Let $C',B',A'$ be points respectively on sides $AB,AC,BC$ of $\triangle ABC$ satisfying $ \tfrac{AB'}{B'C}= \tfrac{BC'}{C'A}=\tfrac{CA'}{A'B}=k$. Prove that the ratio of the area of the triangle formed by the lines $AA',BB',CC'$ over the area of $\triangle ABC$ is $\tfrac{(k-1)^2}{(k^2+k+1)}$.

2016 Croatia Team Selection Test, Problem 3

Let $P$ be a point inside a triangle $ABC$ such that $$ \frac{AP + BP}{AB} = \frac{BP + CP}{BC} = \frac{CP + AP}{CA} .$$ Lines $AP$, $BP$, $CP$ intersect the circumcircle of triangle $ABC$ again in $A'$, $B'$, $C'$. Prove that the triangles $ABC$ and $A'B'C'$ have a common incircle.

2019 CMIMC, 5

Tags: geometry
Let $MATH$ be a trapezoid with $MA=AT=TH=5$ and $MH=11$. Point $S$ is the orthocenter of $\triangle ATH$. Compute the area of quadrilateral $MASH$.

1999 German National Olympiad, 3

A mathematician investigates methods of finding area of a convex quadrilateral obtains the following formula for the area $A$ of a quadrilateral with consecutive sides $a,b,c,d$: $A =\frac{a+c}{2}\frac{b+d}{2}$ (1) and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$ (2) where $p = (a+b+c+d)/2$. However, these formulas are not valid for all convex quadrilaterals. Prove that (1) holds if and only if the quadrilateral is a rectangle, while (2) holds if and only if the quadrilateral is cyclic.

1976 Czech and Slovak Olympiad III A, 3

Consider a half-plane with the boundary line $p$ and two points $M,N$ in it such that the distances $Mp$ and $Np$ are different. Construct a trapezoid $MNPQ$ with area $MN^2$ such that $P,Q\in p.$ Discuss conditions of solvability.

1988 Poland - Second Round, 5

Decide whether any rectangle that can be covered by 25 circles of radius 2 can also be covered by 100 circles of radius 1.

1999 India Regional Mathematical Olympiad, 3

Let $ABCD$ be a square and $M,N$ points on sides $AB, BC$ respectively such that $\angle MDN = 45^{\circ}$. If $R$ is the midpoint of $MN$ show that $RP =RQ$ where $P,Q$ are points of intersection of $AC$ with the lines $MD, ND$.