This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

EMCC Team Rounds, 2013

[b]p1.[/b] Determine the number of ways to place $4$ rooks on a $4 \times 4$ chessboard such that: (a) no two rooks attack one another, and (b) the main diagonal (the set of squares marked $X$ below) does not contain any rooks. [img]https://cdn.artofproblemsolving.com/attachments/e/e/e3aa96de6c8ed468c6ef3837e66a0bce360d36.png[/img] The rooks are indistinguishable and the board cannot be rotated. (Two rooks attack each other if they are in the same row or column.) [b]p2.[/b] Seven students, numbered $1$ to $7$ in counter-clockwise order, are seated in a circle. Fresh Mann has 100 erasers, and he wants to distribute them to the students, albeit unfairly. Starting with person $ 1$ and proceeding counter-clockwise, Fresh Mann gives $i$ erasers to student $i$; for example, he gives $ 1$ eraser to student $ 1$, then $2$ erasers to student $2$, et cetera. He continues around the circle until he does not have enough erasers to give to the next person. At this point, determine the number of erasers that Fresh Mann has. [b]p3.[/b] Let $ABC$ be a triangle with $AB = AC = 17$ and $BC = 24$. Approximate $\angle ABC$ to the nearest multiple of $10$ degrees. [b]p4.[/b] Define a sequence of rational numbers $\{x_n\}$ by $x_1 =\frac35$ and for $n \ge 1$, $x_{n+1} = 2 - \frac{1}{x_n}$ . Compute the product $x_1x_2x_3... x_{2013}$. [b]p5.[/b] In equilateral triangle $ABC$, points $P$ and $R$ lie on segment $AB$, points $I$ and $M$ lie on segment $BC$, and points $E$ and $S$ lie on segment $CA$ such that $PRIMES$ is a equiangular hexagon. Given that $AB = 11$, $PR = 2$, $IM = 3$, and $ES = 5$, compute the area of hexagon $PRIMES$. [b]p6.[/b] Let $f(a, b) = \frac{a^2}{a+b}$ . Let $A$ denote the sum of $f(i, j)$ over all pairs of integers $(i, j)$ with $1 \le i < j \le 10$; that is, $$A = (f(1, 2) + f(1, 3) + ...+ f(1, 10)) + (f(2, 3) + f(2, 4) +... + f(2, 10)) +... + f(9, 10).$$ Similarly, let $B$ denote the sum of $f(i, j)$ over all pairs of integers $(i, j)$ with $1 \le j < i \le 10$, that is, $$B = (f(2, 1) + f(3, 1) + ... + f(10, 1)) + (f(3, 2) + f(4, 2) +... + f(10, 2)) +... + f(10, 9).$$ Compute $B - A$. [b]p7.[/b] Fresh Mann has a pile of seven rocks with weights $1, 1, 2, 4, 8, 16$, and $32$ pounds and some integer X between $1$ and $64$, inclusive. He would like to choose a set of the rocks whose total weight is exactly $X$ pounds. Given that he can do so in more than one way, determine the sum of all possible values of $X$. (The two $1$-pound rocks are indistinguishable.) [b]p8.[/b] Let $ABCD$ be a convex quadrilateral with $AB = BC = CA$. Suppose that point $P$ lies inside the quadrilateral with $AP = PD = DA$ and $\angle PCD = 30^o$. Given that $CP = 2$ and $CD = 3$, compute $CA$. [b]p9.[/b] Define a sequence of rational numbers $\{x_n\}$ by $x_1 = 2$, $x_2 = \frac{13}{2}$ , and for $n \ge 1$, $x_{n+2} = 3 -\frac{3}{x_{n+1}}+\frac{1}{x_nx_{n+1}}$. Compute $x_{100}$. [b]p10.[/b] Ten prisoners are standing in a line. A prison guard wants to place a hat on each prisoner. He has two colors of hats, red and blue, and he has $10$ hats of each color. Determine the number of ways in which the prison guard can place hats such that among any set of consecutive prisoners, the number of prisoners with red hats and the number of prisoners with blue hats differ by at most $2$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Dutch Mathematical Olympiad, 4

Three circles $C_1,C_2,C_3$, with radii $1, 2, 3$ respectively, are externally tangent. In the area enclosed by these circles, there is a circle $C_4$ which is externally tangent to all three circles. Find the radius of $C_4$. [asy] unitsize(0.4 cm); pair[] O; real[] r; O[1] = (-12/5,16/5); r[1] = 1; O[2] = (0,5); r[2] = 2; O[3] = (0,0); r[3] = 3; O[4] = (-132/115, 351/115); r[4] = 6/23; draw(Circle(O[1],r[1])); draw(Circle(O[2],r[2])); draw(Circle(O[3],r[3])); draw(Circle(O[4],r[4])); label("$C_1$", O[1]); label("$C_2$", O[2]); label("$C_3$", O[3]); [/asy]

2012 Sharygin Geometry Olympiad, 4

Given triangle $ABC$. Point $M$ is the midpoint of side $BC$, and point $P$ is the projection of $B$ to the perpendicular bisector of segment $AC$. Line $PM$ meets $AB$ in point $Q$. Prove that triangle $QPB$ is isosceles.

2018 EGMO, 1

Let $ABC$ be a triangle with $CA=CB$ and $\angle{ACB}=120^\circ$, and let $M$ be the midpoint of $AB$. Let $P$ be a variable point of the circumcircle of $ABC$, and let $Q$ be the point on the segment $CP$ such that $QP = 2QC$. It is given that the line through $P$ and perpendicular to $AB$ intersects the line $MQ$ at a unique point $N$. Prove that there exists a fixed circle such that $N$ lies on this circle for all possible positions of $P$.

2011 AMC 10, 14

A rectangular parking lot has a diagonal of $25$ meters and an area of $168$ square meters. In meters, what is the perimeter of the parking lot? $ \textbf{(A)}\ 52 \qquad \textbf{(B)}\ 58 \qquad \textbf{(C)}\ 62 \qquad \textbf{(D)}\ 68 \qquad \textbf{(E)}\ 70 $

2010 Oral Moscow Geometry Olympiad, 6

In a triangle $ABC, O$ is the center of the circumscribed circle. Line $a$ passes through the midpoint of the altitude of the triangle from the vertex $A$ and is parallel to $OA$. Similarly, the straight lines $b$ and $c$ are defined. Prove that these three lines intersect at one point.

Indonesia Regional MO OSP SMA - geometry, 2019.1

Given cube $ ABCD.EFGH $ with $ AB = 4 $ and $ P $ midpoint of the side $ EFGH $. If $ M $ is the midpoint of $ PH $, find the length of segment $ AM $.

2005 Greece Junior Math Olympiad, 3

Tags: geometry
Let $A$ be a given point outside a given circle. Determine points $B, C, D$ on the circle such that the quadrilateral $ABCD$ is convex and has the maximum area .

2007 Italy TST, 1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2007 Today's Calculation Of Integral, 240

2 curves $ y \equal{} x^3 \minus{} x$ and $ y \equal{} x^2 \minus{} a$ pass through the point $ P$ and have a common tangent line at $ P$. Find the area of the region bounded by these curves.

Kyiv City MO Seniors 2003+ geometry, 2017.10.3

Given the square $ABCD$. Let point $M$ be the midpoint of the side $BC$, and $H$ be the foot of the perpendicular from vertex $C$ on the segment $DM$. Prove that $AB = AH$. (Danilo Hilko)

2018 Yasinsky Geometry Olympiad, 6

Given a triangle $ABC$, in which $AB = BC$. Point $O$ is the center of the circumcircle, point $I$ is the center of the incircle. Point $D$ lies on the side $BC$, such that the lines $DI$ and $AB$ parallel. Prove that the lines $DO$ and $CI$ are perpendicular. (Vyacheslav Yasinsky)

1994 Argentina National Olympiad, 6

A $9\times 9$ board has a number written on each square: all squares in the first row have $1$, all squares in the second row have $2$, $\ldots$, all squares in the ninth row have $9$. We will call [i]special [/i] rectangle any rectangle of $2\times 3$ or $3\times 2$ or $4\times 5$ or $5\times 4$ on the board. The permitted operations are: $\bullet$ Simultaneously add $1$ to all the numbers located in a special rectangle. $\bullet$ Simultaneously subtract $1$ from all numbers located in a special rectangle. Demonstrate that it is possible to achieve, through a succession of permitted operations, that $80$ squares to have $0$ (zero). What number is left in the remaining box?

2021-IMOC, G8

Tags: tangent , geometry
Let $P$ be an arbitrary interior point of $\triangle ABC$, and $AP$, $BP$, $CP$ intersect $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Suppose that $M$ be the midpoint of $BC$, $\odot(AEF)$ and $\odot(ABC)$ intersect at $S$, $SD$ intersects $\odot(ABC)$ at $X$, and $XM$ intersects $\odot(ABC)$ at $Y$. Show that $AY$ is tangent to $\odot(AEF)$.

India EGMO 2023 TST, 6

Let $ABC$ be an isosceles triangle with $AB = AC$. Suppose $P,Q,R$ are points on segments $AC, AB, BC$ respectively such that $AP = QB$, $\angle PBC = 90^\circ - \angle BAC$ and $RP = RQ$. Let $O_1, O_2$ be the circumcenters of $\triangle APQ$ and $\triangle CRP$. Prove that $BR = O_1O_2$. [i]Proposed by Atul Shatavart Nadig[/i]

2022 Bundeswettbewerb Mathematik, 3

In an acute triangle $ABC$ with $AC<BC$, lines $m_a$ and $m_b$ are the perpendicular bisectors of sides $BC$ and $AC$, respectively. Further, let $M_c$ be the midpoint of side $AB$. The Median $CM_c$ intersects $m_a$ in point $S_a$ and $m_b$ in point $S_b$; the lines $AS_b$ und $BS_a$ intersect in point $K$. Prove: $\angle ACM_c = \angle KCB$.

2001 Iran MO (2nd round), 2

Tags: geometry
Let $ABC$ be an acute triangle. We draw $3$ triangles $B'AC,C'AB,A'BC$ on the sides of $\Delta ABC$ at the out sides such that: \[ \angle{B'AC}=\angle{C'BA}=\angle{A'BC}=30^{\circ} \ \ \ , \ \ \ \angle{B'CA}=\angle{C'AB}=\angle{A'CB}=60^{\circ} \] If $M$ is the midpoint of side $BC$, prove that $B'M$ is perpendicular to $A'C'$.

2011 China Girls Math Olympiad, 8

The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.

1959 AMC 12/AHSME, 28

In triangle $ABC$, $AL$ bisects angle $A$ and $CM$ bisects angle $C$. Points $L$ and $M$ are on $BC$ and $AB$, respectively. The sides of triangle $ABC$ are $a,b,$ and $c$. Then $\frac{\overline{AM}}{\overline{MB}}=k\frac{\overline{CL}}{\overline{LB}}$ where $k$ is: $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a} $

BIMO 2022, 3

Tags: geometry
Let $\omega$ be the circumcircle of an actue triangle $ABC$ and let $H$ be the feet of aliitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of the sides $AC$ and $AB$. The lines $BM$ and $CN$ intersect each other at $G$ and intersect $\omega$ at $P$ and $Q$ respectively. The circles $(HMG)$ and $(HNG)$ intersect the segments $HP$ and $HQ$ again at $R$ and $S$ respectively. Prove that $PQ\parallel RS$.

1971 Dutch Mathematical Olympiad, 5

Someone draws at least three lines on paper. Each cuts the other lines two by two. No three lines pass through one point. He chooses a line and counts the intersection points on either side of the line. The numbers of intersections turn out to be the same. He chooses another line. Now the intersections number on one side appears to be six times as large as that on the other side. What is the minimum number of lines where this is possible? [hide=original wording of second sentence]De lijnen snijden elkaar twee aan twee.[/hide]

Kyiv City MO Seniors 2003+ geometry, 2012.11.3

Inside the triangle $ABC$ choose the point $M$, and on the side $BC$ - the point $K$ in such a way that $MK || AB$. The circle passing through the points $M, \, \, K, \, \, C,$ crosses the side $AC$ for the second time at the point $N$, a circle passing through the points $M, \, \, N, \, \, A, $ crosses the side $AB$ for the second time at the point $Q$. Prove that $BM = KQ$. (Nagel Igor)

2003 Romania Team Selection Test, 9

Let $n\geq 3$ be a positive integer. Inside a $n\times n$ array there are placed $n^2$ positive numbers with sum $n^3$. Prove that we can find a square $2\times 2$ of 4 elements of the array, having the sides parallel with the sides of the array, and for which the sum of the elements in the square is greater than $3n$. [i]Radu Gologan[/i]

1987 Greece National Olympiad, 4

Let $A,B$ be two points interior of circle $C(O,R)$ and $M$ a point on the circle. Let $A_1,B_1$ be the intersections of the circle with lines $MA$,$MB$ respectively. Let $G$ be the midpoint of $AB$and $G_1= C\cap MG$. Prove that$$\frac{MA}{AA_1}+ \frac{MB}{BB_1}> 2\frac{MG}{GG_1}$$

2007 All-Russian Olympiad, 1

Faces of a cube $9\times 9\times 9$ are partitioned onto unit squares. The surface of a cube is pasted over by $243$ strips $2\times 1$ without overlapping. Prove that the number of bent strips is odd. [i]A. Poliansky[/i]