This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Singapore Senior Math Olympiad, 22

Let $S_1$ and $S_2$ be sets of points on the coordinate plane $\mathbb{R}^2$ defined as follows \[S_1={(x,y)\in \mathbb{R}^2:|x+|x||+|y+|y||\le 2}\] \[S_2={(x,y)\in \mathbb{R}^2:|x-|x||+|y-|y||\le 2}\] Find the area of the intersection of $S_1$ and $S_2$

2021 ELMO Problems, 1

In $\triangle ABC$, points $P$ and $Q$ lie on sides $AB$ and $AC$, respectively, such that the circumcircle of $\triangle APQ$ is tangent to $BC$ at $D$. Let $E$ lie on side $BC$ such that $BD = EC$. Line $DP$ intersects the circumcircle of $\triangle CDQ$ again at $X$, and line $DQ$ intersects the circumcircle of $\triangle BDP$ again at $Y$. Prove that $D$, $E$, $X$, and $Y$ are concyclic.

2022 Dutch BxMO TST, 2

Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude from $A$. The circle with centre $A$ passing through $D$ intersects the circumcircle of triangle $ABC$ in $X$ and $Y$ , in such a way that the order of the points on this circumcircle is: $A, X, B, C, Y$ . Show that $\angle BXD = \angle CYD$.

Swiss NMO - geometry, 2007.6

Three equal circles $k_1, k_2, k_3$ intersect non-tangentially at a point $P$. Let $A$ and $B$ be the centers of circles $k_1$ and $k_2$. Let $D$ and $C$ be the intersection of $k_3$ with $k_1$ and $k_2$ respectively, which is different from $P$. Show that $ABCD$ is a parallelogram.

2019 Novosibirsk Oral Olympiad in Geometry, 6

Point $A$ is located in this circle of radius $1$. An arbitrary chord is drawn through it, and then a circle of radius $2$ is drawn through the ends of this chord. Prove that all such circles touch some fixed circle, not depending from the initial choice of the chord.

2006 AMC 10, 4

Tags: geometry , ratio
Circles of diameter 1 inch and 3 inches have the same center. The smaller circle is painted red, and the portion outside the smaller circle and inside the larger circle is painted blue. What is the ratio of the blue-painted area to the red-painted area? $ \textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9$

1967 Dutch Mathematical Olympiad, 1

In this exercise we only consider convex quadrilaterals. (a) For such a quadrilateral $ABCD$, determine the set of points $P$ contained within that quadrilateral for which $PA$ and $PC$ divide the quadrilateral into two pieces of equal areas. (b) Prove that there is a point $P$ inside such a quadrilateral, such that the triangles $PAB$ and $PCD$ have equal areas, as well as the triangles $PBC$ and $PAD$. (c) Find out which quadrilaterals $ABCD$ contains a point $P$, so that the triangles $PAB$, $PBC$, $PCD$ and $PDA$ have equal areas.

2024 Thailand TST, 2

Tags: nithi , mmp , incenter , geometry
Let $ABC$ be triangle with incenter $I$ . Let $AI$ intersect $BC$ at $D$. Point $P,Q$ lies inside triangle $ABC$ such that $\angle BPA + \angle CQA = 180^\circ$ and $B,Q,I,P,C$ concyclic in order . $BP$ intersect $CQ$ at $X$. Prove that the intersection of $(ABC)$ and $(APQ)$ lies on line $XD$.

2013 Denmark MO - Mohr Contest, 2

The figure shows a rectangle, its circumscribed circle and four semicircles, which have the rectangle’s sides as diameters. Prove that the combined area of the four dark gray crescentshaped regions is equal to the area of the light gray rectangle. [img]https://1.bp.blogspot.com/-gojv6KfBC9I/XzT9ZMKrIeI/AAAAAAAAMVU/NB-vUldjULI7jvqiFWmBC_Sd8QFtwrc7wCLcBGAsYHQ/s0/2013%2BMohr%2Bp3.png[/img]

2010 Swedish Mathematical Competition, 5

Consider the number of triangles where the side lengths $a,b,c$ satisfy $(a + b + c) (a + b -c) = 2b^2$. Determine the angles in the triangle for which the angle opposite to the side with the length $a$ is as big as possible.

1969 Bulgaria National Olympiad, Problem 3

Some of the points in the plane are white and some are blue (every point of the plane is either white or blue). Prove that for every positive number $r$: (a) there are at least two points with different color such that the distance between them is equal to $r$; (b) there are at least two points with the same color and the distance between them is equal to $r$; (c) will the statements above be true if the plane is replaced with the real line?

Ukrainian TYM Qualifying - geometry, III.11

A circle centered at point $O$ is separated by points $A_1,A_2,...,A_n$ on $n$ equal parts (points are listed sequentially clockwise) and the rays $OA_1,OA_2,...,OA_n$ are constructed. The angle $A_2OA_3$ is divided by rays into two equal angles at vertex $O$, the angle $A_3OA_4$ is divided into three equal angles, and so on, finally, the angle $A_nOA_1$ divided into $n$ equal angles at vertex $O$. A point belonging to the ray other than $OA_1$, is connected by a segment with its orthogonal projection $B_0$ on the neighboring (clockwise) arrow) with ray $OA_1$, point$ B_1$ is connected by a segment with its orthogonal projection on the next (clockwise) ray, etc. As a result of such process it turns out the broken line $B_0B_1B_2B_3...$ infinitely "twists". Consider the question of giving the thus obtained broken numerical value of "length" $L (n)$ and explore the value of $L(n)$ depending on $n$.

2004 German National Olympiad, 2

Let $k$ be a circle with center $M.$ There is another circle $k_1$ whose center $M_1$ lies on $k,$ and we denote the line through $M$ and $M_1$ by $g.$ Let $T$ be a point on $k_1$ and inside $k.$ The tangent $t$ to $k_1$ at $T$ intersects $k$ in two points $A$ and $B.$ Denote the tangents (diifferent from $t$) to $k_1$ passing through $A$ and $B$ by $a$ and $b$, respectively. Prove that the lines $a,b,$ and $g$ are either concurrent or parallel.

DMM Individual Rounds, 2002 Tie

[b]p1.[/b] Suppose $a$, $b$ and $c$ are integers such that $c$ divides $a^n + b^n$ for all integers, $n \ge 1$. If the greatest common divisor of $a$ and $b$ is $7$, what is the largest possible value of $c$? [b]p2.[/b] Consider a sequence of points $\{P_1, P_2,...\}$ on a circle w with the property that $\overline{P_{i+1}P_{i+2}}$ is parallel to the tangent line through $P_i$ for each $i \ge 1$. If $P_5 = P_1$, what is the largest possible angle formed by $P_1P_3P_2$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Sharygin Geometry Olympiad, 12

Tags: geometry
(A.Myakishev, 9--10) Given a triangle $ ABC$. Point $ A_1$ is chosen on the ray $ BA$ so that segments $ BA_1$ and $ BC$ are equal. Point $ A_2$ is chosen on the ray $ CA$ so that segments $ CA_2$ and $ BC$ are equal. Points $ B_1$, $ B_2$ and $ C_1$, $ C_2$ are chosen similarly. Prove that lines $ A_1A_2$, $ B_1B_2$, $ C_1C_2$ are parallel.

2006 Mathematics for Its Sake, 2

The cevians $ AP,BQ,CR $ of the triangle $ ABC $ are concurrent at $ F. $ Prove that the following affirmations are equivalent. $ \text{(i)} \overrightarrow{AP} +\overrightarrow{BQ} +\overrightarrow{CR} =0 $ $ \text{(ii)} F$ is the centroid of $ ABC $ [i]Doru Isac[/i]

2004 Harvard-MIT Mathematics Tournament, 9

Tags: geometry
Given is a regular tetrahedron of volume $1$. We obtain a second regular tetrahedron by reflecting the given one through its center. What is the volume of their intersection?

2019 Puerto Rico Team Selection Test, 2

Let $ABCD$ be a square. Let $M$ and $K$ be points on segments $BC$ and $CD$ respectively, such that $MC = KD$. Let $ P$ be the intersection of the segments $MD$ and $BK$. Prove that $AP$ is perpendicular to $MK$.

LMT Team Rounds 2010-20, 2019 Fall

[b]p1.[/b] What is the smallest possible value for the product of two real numbers that differ by ten? [b]p2.[/b] Determine the number of positive integers $n$ with $1 \le n \le 400$ that satisfy the following: $\bullet$ $n$ is a square number. $\bullet$ $n$ is one more than a multiple of $5$. $\bullet$ $n$ is even. [b]p3.[/b] How many positive integers less than $2019$ are either a perfect cube or a perfect square but not both? [b]p4.[/b] Felicia draws the heart-shaped figure $GOAT$ that is made of two semicircles of equal area and an equilateral triangle, as shown below. If $GO = 2$, what is the area of the figure? [img]https://cdn.artofproblemsolving.com/attachments/3/c/388daa657351100f408ab3f1185f9ab32fcca5.png[/img] [b]p5.[/b] For distinct digits $A, B$, and $ C$: $$\begin{tabular}{cccc} & A & A \\ & B & B \\ + & C & C \\ \hline A & B & C \\ \end{tabular}$$ Compute $A \cdot B \cdot C$. [b]p6 [/b] What is the difference between the largest and smallest value for $lcm(a,b,c)$, where $a,b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive? [b]p7.[/b] Let $A$ and $B$ be points on the circumference of a circle with center $O$ such that $\angle AOB = 100^o$. If $X$ is the midpoint of minor arc $AB$ and $Y$ is on the circumference of the circle such that $XY\perp AO$, find the measure of $\angle OBY$ . [b]p8. [/b]When Ben works at twice his normal rate and Sammy works at his normal rate, they can finish a project together in $6$ hours. When Ben works at his normal rate and Sammy works as three times his normal rate, they can finish the same project together in $4$ hours. How many hours does it take Ben and Sammy to finish that project if they each work together at their normal rates? [b][b]p9.[/b][/b] How many positive integer divisors $n$ of $20000$ are there such that when $20000$ is divided by $n$, the quotient is divisible by a square number greater than $ 1$? [b]p10.[/b] What’s the maximum number of Friday the $13$th’s that can occur in a year? [b]p11.[/b] Let circle $\omega$ pass through points $B$ and $C$ of triangle $ABC$. Suppose $\omega$ intersects segment $AB$ at a point $D \ne B$ and intersects segment $AC$ at a point $E \ne C$. If $AD = DC = 12$, $DB = 3$, and $EC = 8$, determine the length of $EB$. [b]p12.[/b] Let $a,b$ be integers that satisfy the equation $2a^2 - b^2 + ab = 18$. Find the ordered pair $(a,b)$. [b]p13.[/b] Let $a,b,c$ be nonzero complex numbers such that $a -\frac{1}{b}= 8, b -\frac{1}{c}= 10, c -\frac{1}{a}= 12.$ Find $abc -\frac{1}{abc}$ . [b]p14.[/b] Let $\vartriangle ABC$ be an equilateral triangle of side length $1$. Let $\omega_0$ be the incircle of $\vartriangle ABC$, and for $n > 0$, define the infinite progression of circles $\omega_n$ as follows: $\bullet$ $\omega_n$ is tangent to $AB$ and $AC$ and externally tangent to $\omega_{n-1}$. $\bullet$ The area of $\omega_n$ is strictly less than the area of $\omega_{n-1}$. Determine the total area enclosed by all $\omega_i$ for $i \ge 0$. [b]p15.[/b] Determine the remainder when $13^{2020} +11^{2020}$ is divided by $144$. [b]p16.[/b] Let $x$ be a solution to $x +\frac{1}{x}= 1$. Compute $x^{2019} +\frac{1}{x^{2019}}$ . [b]p17. [/b]The positive integers are colored black and white such that if $n$ is one color, then $2n$ is the other color. If all of the odd numbers are colored black, then how many numbers between $100$ and $200$ inclusive are colored white? [b]p18.[/b] What is the expected number of rolls it will take to get all six values of a six-sided die face-up at least once? [b]p19.[/b] Let $\vartriangle ABC$ have side lengths $AB = 19$, $BC = 2019$, and $AC = 2020$. Let $D,E$ be the feet of the angle bisectors drawn from $A$ and $B$, and let $X,Y$ to be the feet of the altitudes from $C$ to $AD$ and $C$ to $BE$, respectively. Determine the length of $XY$ . [b]p20.[/b] Suppose I have $5$ unit cubes of cheese that I want to divide evenly amongst $3$ hungry mice. I can cut the cheese into smaller blocks, but cannot combine blocks into a bigger block. Over all possible choices of cuts in the cheese, what’s the largest possible volume of the smallest block of cheese? PS. You had better use hide for answers.

2018 Saudi Arabia IMO TST, 3

Let $ABCD$ be a convex quadrilateral inscibed in circle $(O)$ such that $DB = DA + DC$. The point $P$ lies on the ray $AC$ such that $AP = BC$. The point $E$ is on $(O)$ such that $BE \perp AD$. Prove that $DP$ is parallel to the angle bisector of $\angle BEC$.

2024 Bangladesh Mathematical Olympiad, P5

Consider $\triangle XPQ$ and $\triangle YPQ$ such that $X$ and $Y$ are on the opposite sides of $PQ$ and the circumradius of $\triangle XPQ$ and the circumradius of $\triangle YPQ$ are the same. $I$ and $J$ are the incenters of $\triangle XPQ$ and $\triangle YPQ$ respectively. Let $M$ be the midpoint of $PQ$. Suppose $I, M, J$ are collinear. Prove that $XPYQ$ is a parallelogram.

1956 Moscow Mathematical Olympiad, 328

In a convex quadrilateral $ABCD$, consider quadrilateral $KLMN$ formed by the centers of mass of triangles $ABC, BCD, DBA, CDA$. Prove that the straight lines connecting the midpoints of the opposite sides of quadrilateral $ABCD$ meet at the same point as the straight lines connecting the midpoints of the opposite sides of $KLMN$.

2017 China Team Selection Test, 2

Tags: geometry
In $\varDelta{ABC}$,the excircle of $A$ is tangent to segment $BC$,line $AB$ and $AC$ at $E,D,F$ respectively.$EZ$ is the diameter of the circle.$B_1$ and $C_1$ are on $DF$, and $BB_1\perp{BC}$,$CC_1\perp{BC}$.Line $ZB_1,ZC_1$ intersect $BC$ at $X,Y$ respectively.Line $EZ$ and line $DF$ intersect at $H$,$ZK$ is perpendicular to $FD$ at $K$.If $H$ is the orthocenter of $\varDelta{XYZ}$,prove that:$H,K,X,Y$ are concyclic.

Brazil L2 Finals (OBM) - geometry, 2002.5

Let $ABC$ be a triangle inscribed in a circle of center $O$ and $P$ be a point on the arc $AB$, that does not contain $C$. The perpendicular drawn fom $P$ on line $BO$ intersects $AB$ at $S$ and $BC$ at $T$. The perpendicular drawn from $P$ on line $AO$ intersects $AB$ at $Q$ and $AC$ at $R$. Prove that: a) $PQS$ is an isosceles triangle b) $PQ^2=QR= ST$

1990 Bulgaria National Olympiad, Problem 5

Given a circular arc, find a triangle of the smallest possible area which covers the arc so that the endpoints of the arc lie on the same side of the triangle.