This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2021 IMO Shortlist, G5

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

1992 Dutch Mathematical Olympiad, 3

Consider the configuration of six squares as shown on the picture. Prove that the sum of the area of the three outer squares ($ I,II$ and $ III$) equals three times the sum of the areas of the three inner squares ($ IV,V$ and $ VI$).

2020 Sharygin Geometry Olympiad, 15

Tags: geometry
A circle passing through the vertices $B$ and $D$ of quadrilateral $ABCD$ meets $AB$, $BC$, $CD$, and $DA$ at points $K$, $L$, $M$, and $N$ respectively. A circle passing through $K$ and $M$ meets $AC$ at $P$ and $Q$. Prove that $L$, $N$, $P$, and $Q$ are concyclic.

2016 Middle European Mathematical Olympiad, 6

Let $ABC$ be a triangle for which $AB \neq AC$. Points $K$, $L$, $M$ are the midpoints of the sides $BC$, $CA$, $AB$. The incircle of $ABC$ with center $I$ is tangent to $BC$ in $D$. A line passing through the midpoint of $ID$ perpendicular to $IK$ meets the line $LM$ in $P$. Prove that $\angle PIA = 90 ^{\circ}$.

2023 Yasinsky Geometry Olympiad, 2

In triangle $ABC$, the difference between angles $B$ and $C$ is equal to $90^o$, and $AL$ is the angle bisector of triangle $ABC$. The bisector of the exterior angle $A$ of the triangle $ABC$ intersects the line $BC$ at the point $F$. Prove that $AL = AF$. (Alexander Dzyunyak)

2013 ELMO Shortlist, 2

Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent. [i]Proposed by Michael Kural[/i]

1997 Iran MO (3rd Round), 2

Show that for any arbitrary triangle $ABC$, we have \[\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \leq \frac{abc}{(a+b)(b+c)(c+a)}.\]

2010 Contests, 2

$AB$ is a diameter of a circle with center $O$. Let $C$ and $D$ be two different points on the circle on the same side of $AB$, and the lines tangent to the circle at points $C$ and $D$ meet at $E$. Segments $AD$ and $BC$ meet at $F$. Lines $EF$ and $AB$ meet at $M$. Prove that $E,C,M$ and $D$ are concyclic.

2020 BMT Fall, 1

Tags: geometry
A Yule log is shaped like a right cylinder with height $10$ and diameter $5$. Freya cuts it parallel to its bases into $9$ right cylindrical slices. After Freya cut it, the combined surface area of the slices of the Yule log increased by $a\pi$. Compute $a$.

2024 Argentina Cono Sur TST, 3

Let $ABC$ be an acute triangle. The point $B'$ of the line $CA$ is such that $A$, $C$ and $B'$ are in that order on the line and $B'C=AB$; the point $C'$ of the line $AB$ is such that $A$, $B$ and $C'$ are in that order on the line and $C'B=AC$. Prove that the circumcenter of triangle $AB'C'$ belongs to the circumcircle of triangle $ABC$.

2010 Sharygin Geometry Olympiad, 5

Let $BH$ be an altitude of a right-angled triangle $ABC$ ($\angle B = 90^o$). The incircle of triangle $ABH$ touches $AB,AH$ in points $H_1, B_1$, the incircle of triangle $CBH$ touches $CB,CH$ in points $H_2, B_2$, point $O$ is the circumcenter of triangle $H_1BH_2$. Prove that $OB_1 = OB_2$.

2012 ELMO Shortlist, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

2024 Iranian Geometry Olympiad, 2

Points $X,Y$ lie on the side $CD$ of a convex pentagon $ABCDE$ with $X$ between $Y$ and $C$. Suppose that the triangles $\bigtriangleup XCB, \bigtriangleup ABX, \bigtriangleup AXY, \bigtriangleup AYE, \bigtriangleup YED$ are all similar (in this exact order). Prove that circumcircles of the triangles $\bigtriangleup ACD, \bigtriangleup AXY$ are tangent. [i]Pouria Mahmoudkhan Shirazi - Iran[/i]

2002 National Olympiad First Round, 24

How many positive integers $n$ are there such that the equation $\left \lfloor \sqrt[3] {7n + 2} \right \rfloor = \left \lfloor \sqrt[3] {7n + 3} \right \rfloor $ does not hold? $ \textbf{a)}\ 0 \qquad\textbf{b)}\ 1 \qquad\textbf{c)}\ 7 \qquad\textbf{d)}\ \text{Infinitely many} \qquad\textbf{e)}\ \text{None of above} $

2009 Putnam, A1

Let $ f$ be a real-valued function on the plane such that for every square $ ABCD$ in the plane, $ f(A)\plus{}f(B)\plus{}f(C)\plus{}f(D)\equal{}0.$ Does it follow that $ f(P)\equal{}0$ for all points $ P$ in the plane?

2012 Waseda University Entrance Examination, 5

Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$. Answer the following questions: (1) Illustrate $F$. (2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.

1994 Chile National Olympiad, 4

Consider a box of dimensions $10$ cm $\times 16$ cm $\times 1$ cm. Determine the maximum number of balls of diameter $ 1$ cm that the box can contain.

2006 Spain Mathematical Olympiad, 2

The dimensions of a wooden octahedron are natural numbers. We painted all its surface (the six faces), cut it by planes parallel to the cubed faces of an edge unit and observed that exactly half of the cubes did not have any painted faces. Prove that the number of octahedra with such property is finite. (It may be useful to keep in mind that $\sqrt[3]{\frac{1}{2}}=1,79 ... <1,8$). [hide=original wording] Las dimensiones de un ortoedro de madera son enteras. Pintamos toda su superficie (las seis caras), lo cortamos mediante planos paralelos a las caras en cubos de una unidad de arista y observamos que exactamente la mitad de los cubos no tienen ninguna cara pintada. Probar que el número de ortoedros con tal propiedad es finito[/hide]

1979 Poland - Second Round, 3

In space there is a line $ k $ and a cube with a vertex $ M $ and edges $ \overline{MA} $, $ \overline{MB} $, $ \overline{MC} $, of length$ 1$. Prove that the length of the orthogonal projection of edge $ MA $ on the line $ k $ is equal to the area of the orthogonal projection of a square with sides $ MB $ and $ MC $ onto a plane perpendicular to the line $ k $. [hide=original wording]W przestrzeni dana jest prosta $ k $ oraz sześcian o wierzchołku $ M $ i krawędziach $ \overline{MA} $, $ \overline{MB} $, $ \overline{MC} $, długości 1. Udowodnić, że długość rzutu prostokątnego krawędzi $ MA $ na prostą $ k $ jest równa polu rzutu prostokątnego kwadratu o bokach $ MB $ i $ MC $ na płaszczyznę prostopadłą do prostej $ k $.[/hide]

2021 Czech-Austrian-Polish-Slovak Match, 2

In an acute triangle $ABC$, the incircle $\omega$ touches $BC$ at $D$. Let $I_a$ be the excenter of $ABC$ opposite to $A$, and let $M$ be the midpoint of $DI_a$. Prove that the circumcircle of triangle $BMC$ is tangent to $\omega$. [i]Patrik Bak (Slovakia)[/i]

2018 Iran Team Selection Test, 6

Tags: geometry
Consider quadrilateral $ABCD $ inscribed in circle $\omega $. $P\equiv AC\cap BD$. $E$, $F$ lie on sides $AB$, $CD$ respectively such that $\hat {APE}=\hat {DPF} $. Circles $\omega_1$, $\omega_2$ are tangent to $\omega$ at $X $, $Y $ respectively and also both tangent to the circumcircle of $\triangle PEF $ at $P $. Prove that: $$\frac {EX}{EY}=\frac {FX}{FY} $$ [i]Proposed by Ali Zamani [/i]

2002 AMC 12/AHSME, 18

A point $ P$ is randomly selected from the rectangular region with vertices $ (0, 0)$, $ (2, 0)$, $ (2, 1)$, $ (0, 1)$. What is the probability that $ P$ is closer to the origin than it is to the point $ (3, 1)$? $ \textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ \frac{2}{3} \qquad \textbf{(C)}\ \frac{3}{4} \qquad \textbf{(D)}\ \frac{4}{5} \qquad \textbf{(E)}\ 1$

1996 Bundeswettbewerb Mathematik, 1

For a given set of points in space it is allowed to mirror a point from the set with respect to another point from the set, and to include the image in the set. Starting with a set of seven vertices of a cube, is it possible to include the eight vertex in the set after finitely many such steps?

Swiss NMO - geometry, 2010.2

Tags: geometry
Let $ \triangle{ABC}$ be a triangle with $ AB\not\equal{}AC$. The incircle with centre $ I$ touches $ BC$, $ CA$, $ AB$ at $ D$, $ E$, $ F$, respectively. Furthermore let $ M$ the midpoint of $ EF$ and $ AD$ intersect the incircle at $ P\not\equal{}D$. Show that $ PMID$ ist cyclic.

1897 Eotvos Mathematical Competition, 1

Tags: geometry
Prove, for angles $\alpha$, $\beta$ and $\gamma$ of a right triangle, the following relation: $$\text{sin } \alpha \text{ sin } \beta \text{ sin } (\alpha-\beta) \text{ } + \text{ sin } \beta \text{ sin } \gamma \text{ sin } (\beta-\gamma) \text{ }+ \text{ sin } \gamma \text{ sin } \alpha \text{ sin } (\gamma-\alpha) \text{ }+ \text{ sin } (\alpha-\beta) \text{ sin } (\beta-\gamma) \text{ sin } (\gamma-\alpha) = 0.$$