This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1990 Irish Math Olympiad, 5

Tags: geometry
Let $ABC$ be a right-angled triangle with right-angle at $A$. Let $X$ be the foot of the perpendicular from $A$ to $BC$, and $Y$ the mid-point of $XC$. Let $AB$ be extended to $D$ so that $|AB|=|BD|$. Prove that $DX$ is perpendicular to $AY$.

2019 Pan-African Shortlist, G4

Let $ABC$ be a triangle, and $D$, $E$, $F$ points on the segments $BC$, $CA$, and $AB$ respectively such that $$ \frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB}. $$ Show that if the centres of the circumscribed circles of the triangles $DEF$ and $ABC$ coincide, then $ABC$ is an equilateral triangle.

MathLinks Contest 4th, 6.2

Let $P$ be the set of points in the plane, and let $f : P \to P$ be a function such that the image through $f$ of any triangle is a square (any polygon is considered to be formed by the reunion of the points on its sides). Prove that $f(P)$ is a square.

2024 Romania EGMO TST, P3

Given acute angle triangle $ ABC$. Let $ CD$be the altitude , $ H$ be the orthocenter and $ O$ be the circumcenter of $ \triangle ABC$ The line through point $ D$ and perpendicular with $ OD$ , is intersect $ BC$ at $ E$. Prove that $ \angle DHE \equal{} \angle ABC$.

1993 All-Russian Olympiad Regional Round, 11.3

Point $O$ is the foot of the altitude of a quadrilateral pyramid. A sphere with center $O$ is tangent to all lateral faces of the pyramid. Points $A,B,C,D$ are taken on successive lateral edges so that segments $AB$, $BC$, and $CD$ pass through the three corresponding tangency points of the sphere with the faces. Prove that the segment $AD$ passes through the fourth tangency point

DMM Team Rounds, 2005

[b]p1.[/b] Find the sum of the seventeenth powers of the seventeen roots of the seventeeth degree polynomial equation $x^{17} - 17x + 17 = 0$. [b]p2.[/b] Four identical spherical cows, each of radius $17$ meters, are arranged in a tetrahedral pyramid (their centers are the vertices of a regular tetrahedron, and each one is tangent to the other three). The pyramid of cows is put on the ground, with three of them laying on it. What is the distance between the ground and the top of the topmost cow? [b]p3.[/b] If $a_n$ is the last digit of $\sum^{n}_{i=1} i$, what would the value of $\sum^{1000}_{i=1}a_i$ be? [b]p4.[/b] If there are $15$ teams to play in a tournament, $2$ teams per game, in how many ways can the tournament be organized if each team is to participate in exactly $5$ games against dierent opponents? [b]p5.[/b] For $n = 20$ and $k = 6$, calculate $$2^k {n \choose 0}{n \choose k}- 2^{k-1}{n \choose 1}{{n - 1} \choose {k - 1}} + 2^{k-2}{n \choose 2}{{n - 2} \choose {k - 2}} +...+ (-1)^k {n \choose k}{{n - k} \choose 0}$$ where ${n \choose k}$ is the number of ways to choose $k$ things from a set of $n$. [b]p6.[/b] Given a function $f(x) = ax^2 + b$, with a$, b$ real numbers such that $$f(f(f(x))) = -128x^8 + \frac{128}{3}x^6 - \frac{16}{22}x^2 +\frac{23}{102}$$ , find $b^a$. [b]p7.[/b] Simplify the following fraction $$\frac{(2^3-1)(3^3-1)...(100^3-1)}{(2^3+1)(3^3+1)...(100^3+1)}$$ [b]p8.[/b] Simplify the following expression $$\frac{\sqrt{3 + \sqrt5} + \sqrt{3 - \sqrt5}}{\sqrt{3 - \sqrt8}} -\frac{4}{ \sqrt{8 - 2\sqrt{15}}}$$ [b]p9.[/b] Suppose that $p(x)$ is a polynomial of degree $100$ such that $p(k) = k2^{k-1}$ , $k =1, 2, 3 ,... , 100$. What is the value of $p(101)$ ? [b]p10. [/b] Find all $17$ real solutions $(w, x, y, z)$ to the following system of equalities: $$ 2w + w^2x = x$$ $$ 2x + x^2y=y $$ $$ 2y + y^2z=z $$ $$ -2z+z^2w=w $$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Vietnam National Olympiad, 7

Let $ AD$ is centroid of $ ABC$ triangle. Let $ (d)$ is the perpendicular line with $ AD$. Let $ M$ is a point on $ (d)$. Let $ E, F$ are midpoints of $ MB, MC$ respectively. The line through point $ E$ and perpendicular with $ (d)$ meet $ AB$ at $ P$. The line through point $ F$ and perpendicular with $ (d)$ meet $ AC$ at $ Q$. Let $ (d')$ is a line through point $ M$ and perpendicular with $ PQ$. Prove $ (d')$ always pass a fixed point.

2007 France Team Selection Test, 3

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2015 BmMT, Ind. Round

[b]p1.[/b] What is the units digit of $1 + 9 + 9^2 +... + 9^{2015}$ ? [b]p2.[/b] In Fourtown, every person must have a car and therefore a license plate. Every license plate must be a $4$-digit number where each digit is a value between $0$ and $9$ inclusive. However $0000$ is not a valid license plate. What is the minimum population of Fourtown to guarantee that at least two people who have the same license plate? [b]p3.[/b] Two sides of an isosceles triangle $\vartriangle ABC$ have lengths $9$ and $4$. What is the area of $\vartriangle ABC$? [b]p4.[/b] Let $x$ be a real number such that $10^{\frac{1}{x}} = x$. Find $(x^3)^{2x}$. [b]p5.[/b] A Berkeley student and a Stanford student are going to visit each others campus and go back to their own campuses immediately after they arrive by riding bikes. Each of them rides at a constant speed. They first meet at a place $17.5$ miles away from Berkeley, and secondly $10$ miles away from Stanford. How far is Berkeley away from Stanford in miles? [b]p6.[/b] Let $ABCDEF$ be a regular hexagon. Find the number of subsets $S$ of $\{A,B,C,D,E, F\}$ such that every edge of the hexagon has at least one of its endpoints in $S$. [b]p7.[/b] A three digit number is a multiple of $35$ and the sum of its digits is $15$. Find this number. [b]p8.[/b] Thomas, Olga, Ken, and Edward are playing the card game SAND. Each draws a card from a $52$ card deck. What is the probability that each player gets a di erent rank and a different suit from the others? [b]p9.[/b] An isosceles triangle has two vertices at $(1, 4)$ and $(3, 6)$. Find the $x$-coordinate of the third vertex assuming it lies on the $x$-axis. [b]p10.[/b] Find the number of functions from the set $\{1, 2,..., 8\}$ to itself such that $f(f(x)) = x$ for all $1 \le x \le 8$. [b]p11.[/b] The circle has the property that, no matter how it's rotated, the distance between the highest and the lowest point is constant. However, surprisingly, the circle is not the only shape with that property. A Reuleaux Triangle, which also has this constant diameter property, is constructed as follows. First, start with an equilateral triangle. Then, between every pair of vertices of the triangle, draw a circular arc whose center is the $3$rd vertex of the triangle. Find the ratio between the areas of a Reuleaux Triangle and of a circle whose diameters are equal. [b]p12.[/b] Let $a$, $b$, $c$ be positive integers such that gcd $(a, b) = 2$, gcd $(b, c) = 3$, lcm $(a, c) = 42$, and lcm $(a, b) = 30$. Find $abc$. [b]p13.[/b] A point $P$ is inside the square $ABCD$. If $PA = 5$, $PB = 1$, $PD = 7$, then what is $PC$? [b]p14.[/b] Find all positive integers $n$ such that, for every positive integer $x$ relatively prime to $n$, we have that $n$ divides $x^2 - 1$. You may assume that if $n = 2^km$, where $m$ is odd, then $n$ has this property if and only if both $2^k$ and $m$ do. [b]p15.[/b] Given integers $a, b, c$ satisfying $$abc + a + c = 12$$ $$bc + ac = 8$$ $$b - ac = -2,$$ what is the value of $a$? [b]p16.[/b] Two sides of a triangle have lengths $20$ and $30$. The length of the altitude to the third side is the average of the lengths of the altitudes to the two given sides. How long is the third side? [b]p17.[/b] Find the number of non-negative integer solutions $(x, y, z)$ of the equation $$xyz + xy + yz + zx + x + y + z = 2014.$$ [b]p18.[/b] Assume that $A$, $B$, $C$, $D$, $E$, $F$ are equally spaced on a circle of radius $1$, as in the figure below. Find the area of the kite bounded by the lines $EA$, $AC$, $FC$, $BE$. [img]https://cdn.artofproblemsolving.com/attachments/7/7/57e6e1c4ef17f84a7a66a65e2aa2ab9c7fd05d.png[/img] [b]p19.[/b] A positive integer is called cyclic if it is not divisible by the square of any prime, and whenever $p < q$ are primes that divide it, $q$ does not leave a remainder of $1$ when divided by $p$. Compute the number of cyclic numbers less than or equal to $100$. [b]p20.[/b] On an $8\times 8$ chess board, a queen can move horizontally, vertically, and diagonally in any direction for as many squares as she wishes. Find the average (over all $64$ possible positions of the queen) of the number of squares the queen can reach from a particular square (do not count the square she stands on). PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 China Second Round Olympiad, 11

A line $\ell$ with slope of $\frac{1}{3}$ insects the ellipse $C:\frac{x^2}{36}+\frac{y^2}{4}=1$ at points $A,B$ and the point $P\left( 3\sqrt{2} , \sqrt{2}\right)$ is above the line $\ell$. [list] [b](1)[/b] Prove that the locus of the incenter of triangle $PAB$ is a segment, [b](2)[/b] If $\angle APB=\frac{\pi}{3}$, then find the area of triangle $PAB$.[/list]

2008 ITest, 56

During the van ride from the Grand Canyon to the beach, Michael asks his dad about the costs of renewable energy resources. "How much more does it really cost for a family like ours to switch entirely to renewable energy?" Jerry explains, "Part of that depends on where the family lives. In the Western states, solar energy pays off more than it does where we live in the Southeast. But as technology gets better, costs of producing more photovoltaic power go down, so in just a few years more people will have reasonably inexpensive options for switching to clearner power sources. Even now most families could switch to biomass for between $\$200$ and $\$1000$ per year. The energy comes from sawdust, switchgrass, and even landfill gas. We pay that premium ourselves, but some families operate on a tighter budget, or don't understand the alternatives yet." "Ew, landfill gas!" Alexis complains mockingly. Wanting to save her own energy, Alexis decides to take a nap. She falls asleep and dreams of walking around a $2-\text{D}$ coordinate grid, looking for a wormhole that she believes will transport her to the beach (bypassing the time spent in the family van). In her dream, Alexis finds herself holding a device that she recognizes as a $\textit{tricorder}$ from one of the old $\textit{Star Trek}$ t.v. series. The tricorder has a button labeled "wormhole" and when Alexis presses the button, a computerized voice from the tricorder announces, "You are at the origin. Distance to the wormhole is $2400$ units. Your wormhole distance allotment is $\textit{two}$."' Unsure as to how to reach, Alexis begins walking forward. As she walks, the tricorder displays at all times her distance from her starting point at the origin. When Alexis is $2400$ units from the origin, she again presses the "wormhole" buttom. The same computerized voice as before begins, "Distance to the origin is $2400$ units. Distance to the wormhole is $3840$ units. Your wormhole distance allotment is $\textit{two}$." Alexis begins to feel disoriented. She wonders what is means that her $\textit{wormhole distance allotment is two}$, and why that number didn't change as she pushed the button. She puts her hat down to mark her position, then wanders aroud a bit. The tricorder shows her two readings as she walks. The first she recognizes as her distance to the origin. The second reading clearly indicates her distance from the point where her hat lies - where she last pressed the button that gave her distance to the wormhole. Alexis picks up her hat and begins walking around. Eventually Alexis finds herself at a spot $2400$ units from the origin and $3840$ units from where she last pressed the button. Feeling hopeful, Alexis presses the tricorder's wormhole button again. Nothing happens. She presses it again, and again nothing happens. "Oh," she thinks, "my wormhole allotment was $\textit{two}$, and I used it up already!" Despair fills poor Alexis who isn't sure what a wormhole looks like or how she's supposed to find it. Then she takes matters into her own hands. Alexis sits down and scribbles some notes and realizes where the wormhole must be. Alexis gets up and runs straight from her "third position" to the wormhole. As she gets closer, she sees the wormhole, which looks oddly like a huge scoop of icecream. Alexis runs into the wormhole, then wakes up. How many units did Alexis run from her third position to the wormhole?

2015 Silk Road, 4

Tags: geometry
Let O be a circumcenter of an acute-angled triangle ABC. Consider two circles ω and Ω inscribed in the angle BAC in such way that ω is tangent from the outside to the arc BOC of a circle circumscribed about the triangle BOC; and the circle Ω is tangent internally to a circumcircle of triangle ABC. Prove that the radius of Ω is twice the radius ω.

2004 Regional Olympiad - Republic of Srpska, 2

Let $ABC$ be a triangle, $T$ its centroid and $S$ its incenter. Prove that the following conditions are equivalent: (1) line $TS$ is parallel to one side of triangle $ABC$, (2) one of the sides of triangle $ABC$ is equal to the half-sum of the other two sides.

2015 Balkan MO Shortlist, A2

Let $a,b,c$ be sidelengths of a triangle and $r,R,s$ be the inradius, the circumradius and the semiperimeter respectively of the same triangle. Prove that: $$\frac{1}{a + b} + \frac{1}{a + c} + \frac{1}{b + c} \leq \frac{r}{16Rs}+\frac{s}{16Rr} + \frac{11}{8s}$$ (Albania)

2013 HMIC, 3

Triangle $ABC$ is inscribed in a circle $\omega$ such that $\angle A = 60^o$ and $\angle B = 75^o$. Let the bisector of angle $A$ meet $BC$ and $\omega$ at $E$ and $D$, respectively. Let the reflections of $A$ across $D$ and $C$ be $D'$ and $C'$ , respectively. If the tangent to $\omega$ at $A$ meets line $BC$ at $P$, and the circumcircle of $APD'$ meets line $AC$ at $F \ne A$, prove that the circumcircle of $C'FE$ is tangent to $BC$ at $E$.

Kyiv City MO Juniors 2003+ geometry, 2014.851

On the side $AB$ of the triangle $ABC$ mark the point $K$. The segment $CK$ intersects the median $AM$ at the point $F$. It is known that $AK = AF$. Find the ratio $MF: BK$.

Fractal Edition 1, P4

Tags: geometry
In triangle \( ABC \), \( D \), \( E \), and \( F \) are the feet of the perpendiculars from the vertices \( A \), \( B \), and \( C \), respectively. The parallel to \( EF \) through \( D \) intersects \( AB \) at \( P_B \) and \( AC \) at \( P_C \). Let \( X \) be the intersection of \( EF \) and \( BC \). Prove that the circumcircle of triangle \( P_B P_C X \) passes through the midpoint of side \( BC \).

2022 Brazil National Olympiad, 3

Tags: geometry
Let $ABC$ be a triangle with incenter $I$ and let $\Gamma$ be its circumcircle. Let $M$ be the midpoint of $BC$, $K$ the midpoint of the arc $BC$ which does not contain $A$, $L$ the midpoint of the arc $BC$ which contains $A$ and $J$ the reflection of $I$ by the line $KL$. The line $LJ$ intersects $\Gamma$ again at the point $T\neq L$. The line $TM$ intersects $\Gamma$ again at the point $S\neq T$. Prove that $S, I, M, K$ lie on the same circle.

1999 All-Russian Olympiad Regional Round, 8.8

An open chain was made from $54$ identical single cardboard squares, connecting them hingedly at the vertices. Any square (except for the extreme ones) is connected to its neighbors by two opposite vertices. Is it possible to completely cover a $3\times 3 \times3$ surface with this chain of squares?

2000 Slovenia National Olympiad, Problem 4

All vertices of a convex $n$-gon ($n\ge3$) in the plane have integer coordinates. Show that its area is at least $\frac{n-2}2$.

2023 Olympic Revenge, 5

Let $ABCD$ be a circumscribed quadrilateral and $T=AC\cap BD$. Let $I_1$, $I_2$, $I_3$, $I_4$ the incenters of $\Delta TAB$, $\Delta TBC$, $TCD$, $TDA$, respectively, and $J_1$, $J_2$, $J_3$, $J_4$ the incenters of $\Delta ABC$, $\Delta BCD$, $\Delta CDA$, $\Delta DAB$. Show that $I_1I_2I_3I_4$ is a cyclic quadrilateral and its center is $J_1J_3\cap J_2J_4$

2017 Morocco TST-, 4

Tags: geometry , circles
Two circles $ G_1$ and $ G_2$ intersect at two points $ M$ and $ N$. Let $ AB$ be the line tangent to these circles at $ A$ and $ B$, respectively, so that $ M$ lies closer to $ AB$ than $ N$. Let $ CD$ be the line parallel to $ AB$ and passing through the point $ M$, with $ C$ on $ G_1$ and $ D$ on $ G_2$. Lines $ AC$ and $ BD$ meet at $ E$; lines $ AN$ and $ CD$ meet at $ P$; lines $ BN$ and $ CD$ meet at $ Q$. Show that $ EP \equal{} EQ$.

1965 All Russian Mathematical Olympiad, 070

Prove that the sum of the lengths of the polyhedron edges exceeds its tripled diameter (distance between two farest vertices).

Ukraine Correspondence MO - geometry, 2014.10

In the triangle $ABC$, it is known that $AC <AB$. Let $\ell$ be tangent to the circumcircle of triangle $ABC$ drawn at point $A$. A circle with center $A$ and radius $AC$ intersects segment $AB$ at point $D$, and line $\ell$ at points $E$ and $F$. Prove that one of the lines $DE$ and $DF$ passes through the center inscribed circle of triangle $ABC$.

2011 AIME Problems, 5

The vertices of a regular nonagon (9-sided polygon) are to be labeled with the digits $1$ through $9$ in such a way that the sum of the numbers on every three consecutive vertices is a multiple of $3$. Two acceptable arrangements are considered to be indistinguishable if one can be obtained from the other by rotating the nonagon in the plane. Find the number of distinguishable acceptable arrangements.