This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2008 Germany Team Selection Test, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

2019 HMNT, 9

Tags: geometry
Will stands at a point $P$ on the edge of a circular room with perfectly reflective walls. He shines two laser pointers into the room, forming angles of $n^o$ and $(n + 1)^o$ with the tangent at $P$, where $n$ is a positive integer less than $90$. The lasers reflect off of the walls, illuminating the points they hit on the walls, until they reach $P$ again. ($P$ is also illuminated at the end.) What is the minimum possible number of illuminated points on the walls of the room? [img]https://cdn.artofproblemsolving.com/attachments/a/9/5548d7b34551369d1b69eae682855bcc406f9e.jpg[/img]

2006 Thailand Mathematical Olympiad, 2

From a point $P$ outside a circle, two tangents are drawn touching the circle at points $A$ and $C$. Let $B$ be a point on segment $AC$, and let segment $PB$ intersect the circle at point $Q$. The angle bisector of $\angle AQC$ intersects segment $AC$ at $R$. Show that $$\frac{AB}{BC} =\left(\frac{ AR}{RC}\right)^2$$

Swiss NMO - geometry, 2018.6

Let $k$ be the incircle of the triangle $ABC$ with the center of the incircle $I$. The circle $k$ touches the sides $BC, CA$ and $AB$ in points $D, E$ and $F$. Let $G$ be the intersection of the straight line $AI$ and the circle $k$, which lies between $A$ and $I$. Assume $BE$ and $FG$ are parallel. Show that $BD = EF$.

2018 Cono Sur Olympiad, 1

Tags: geometry
Let $ABCD$ be a convex quadrilateral, where $R$ and $S$ are points in $DC$ and $AB$, respectively, such that $AD=RC$ and $BC=SA$. Let $P$, $Q$ and $M$ be the midpoints of $RD$, $BS$ and $CA$, respectively. If $\angle MPC + \angle MQA = 90$, prove that $ABCD$ is cyclic.

2012 ELMO Problems, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

2012 Tournament of Towns, 3

In the parallelogram $ABCD$, the diagonal $AC$ touches the incircles of triangles $ABC$ and $ADC$ at $W$ and $Y$ respectively, and the diagonal $BD$ touches the incircles of triangles $BAD$ and $BCD$ at $X$ and $Z$ respectively. Prove that either $W,X, Y$ and $Z$ coincide, or $WXYZ$ is a rectangle.

2017 Thailand Mathematical Olympiad, 2

A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.

2022 Tuymaada Olympiad, 3

Tags: geometry
Bisectors of a right triangle $\triangle ABC$ with right angle $B$ meet at point $I.$ The perpendicular to $IC$ drawn from $B$ meets the line $IA$ at $D;$ the perpendicular to $IA$ drawn from $B$ meets the line $IC$ at $E.$ Prove that the circumcenter of the triangle $\triangle IDE$ lies on the line $AC.$ [i](A. Kuznetsov )[/i]

1998 All-Russian Olympiad Regional Round, 9.1

The lengths of the sides of a certain triangle and the diameter of the inscribed part circles are four consecutive terms of arithmetic progression. Find all such triangles.

1977 AMC 12/AHSME, 19

Let $E$ be the point of intersection of the diagonals of convex quadrilateral $ABCD$, and let $P,Q,R,$ and $S$ be the centers of the circles circumscribing triangles $ABE,$ $BCE$, $CDE$, and $ADE$, respectively. Then $\textbf{(A) }PQRS\text{ is a parallelogram}$ $\textbf{(B) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rhombus}$ $\textbf{(C) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rectangle}$ $\textbf{(D) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a parallelogram}$ $\textbf{(E) }\text{none of the above are true}$

1999 Estonia National Olympiad, 3

Tags: square , ratio , geometry
Let $E$ and $F$ be the midpoints of the lines $AB$ and $DA$ of a square $ABCD$, respectively and let $G$ be the intersection of $DE$ with $CF$. Find the aspect ratio of sidelengths of the triangle $EGC$, $| EG | : | GC | : | CE |$.

1962 AMC 12/AHSME, 6

A square and an equilateral triangle have equal perimeters. The area of the triangle is $ 9 \sqrt{3}$ square inches. Expressed in inches the diagonal of the square is: $ \textbf{(A)}\ \frac{9}{2} \qquad \textbf{(B)}\ 2 \sqrt{5} \qquad \textbf{(C)}\ 4 \sqrt{2} \qquad \textbf{(D)}\ \frac{9 \sqrt{2}}{2} \qquad \textbf{(E)}\ \text{none of these}$

2021 CIIM, 1

For every $0 < \alpha < 1$, let $R(\alpha)$ be the region in $\mathbb{R}^2$ whose boundary is the convex pentagon of vertices $(0,1-\alpha), (\alpha, 0), (1, 0), (1,1)$ and $(0, 1)$. Let $R$ be the set of points that belong simultaneously to each of the regions $R(\alpha)$ with $0 < \alpha < 1$, that is, $R =\bigcap_{0<\alpha<1} R(\alpha)$. Determine the area of $R$.

2018 Romanian Masters in Mathematics, 6

Tags: geometry
Fix a circle $\Gamma$, a line $\ell$ to tangent $\Gamma$, and another circle $\Omega$ disjoint from $\ell$ such that $\Gamma$ and $\Omega$ lie on opposite sides of $\ell$. The tangents to $\Gamma$ from a variable point $X$ on $\Omega$ meet $\ell$ at $Y$ and $Z$. Prove that, as $X$ varies over $\Omega$, the circumcircle of $XYZ$ is tangent to two fixed circles.

2013 Brazil Team Selection Test, 1

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.

2009 Bosnia And Herzegovina - Regional Olympiad, 2

Let $ABC$ be an equilateral triangle such that length of its altitude is $1$. Circle with center on the same side of line $AB$ as point $C$ and radius $1$ touches side $AB$. Circle rolls on the side $AB$. While the circle is rolling, it constantly intersects sides $AC$ and $BC$. Prove that length of an arc of the circle, which lies inside the triangle, is constant

2001 Moldova National Olympiad, Problem 3

Tags: geometry
A line $d_i~(i=1,2,3)$ intersects two opposite sides of a square $ABCD$ at points $M_i$ and $N_i$. Prove that if $M_1N_1=M_2N_2=M_3N_3$, then two of the lines $d_i$ are either parallel or perpendicular.

2017-IMOC, C6

Consider a convex polygon in a plane such that the length of all edges and diagonals are rational. After connecting all diagonals, prove that any length of a segment is rational.

2011 Sharygin Geometry Olympiad, 5

Tags: geometry
Given triangle $ABC$. The midperpendicular of side $AB$ meets one of the remaining sides at point $C'$. Points $A'$ and $B'$ are defined similarly. Find all triangles $ABC$ such that triangle $A'B'C'$ is regular.

2009 Regional Olympiad of Mexico Northeast, 3

The incircle of triangle $\vartriangle ABC$ is tangent to side $AB$ at point $P$ and to side $BC$ at point $Q$. The circle passing through points $A,P,Q$ intersects line $BC$ a second time at $M$ and the circle passes through the points $C,P,Q$ and cuts the line $AB$ a second time at point$ N$. Prove that $NM$ is tangent to the incircle of $ABC$.

2013 Oral Moscow Geometry Olympiad, 5

In the acute-angled triangle $ABC$, let $AP$ and $BQ$ be the altitudes, $CM$ be the median . Point $R$ is the midpoint of $CM$. Line $PQ$ intersects line $AB$ at $T$. Prove that $OR \perp TC$, where $O$ is the center of the circumscribed circle of triangle $ABC$.

2018 Bundeswettbewerb Mathematik, 3

Let $H$ be the orthocenter of the acute triangle $ABC$. Let $H_a$ be the foot of the perpendicular from $A$ to $BC$ and let the line through $H$ parallel to $BC$ intersect the circle with diameter $AH_a$ in the points $P_a$ and $Q_a$. Similarly, we define the points $P_b, Q_b$ and $P_c,Q_c$. Show that the six points $P_a,Q_a,P_b,Q_b,P_c,Q_c$ lie on a common circle.

2018 Dutch IMO TST, 2

Suppose a triangle $\vartriangle ABC$ with $\angle C = 90^o$ is given. Let $D$ be the midpoint of $AC$, and let $E$ be the foot of the altitude through $C$ on $BD$. Show that the tangent in $C$ of the circumcircle of $\vartriangle AEC$ is perpendicular to $AB$.

1999 Harvard-MIT Mathematics Tournament, 1

Tags: geometry
Two $10 \times 24$ rectangles are inscribed in a circle as shown. Find the shaded area. [img]https://cdn.artofproblemsolving.com/attachments/1/7/c97fb0e6f45a52fa751777da6ebc519839e379.png[/img]